- Схемы автоматической защиты трехфазного двигателя при пропадании фазы
- Схемы автоматической защиты трехфазного двигателя при пропадании фазы
- Защита трехфазного двигателя
- Способы автоматической защиты трехфазного двигателя при отключении фазы электрической сети.
- Защита 3-фазного двигателя при отключении фазы электрической сети.
Схемы автоматической защиты трехфазного двигателя при пропадании фазы
Трехфазные электродвигатели при случайном отключении одной из фаз быстро перегреваются и выходят из строя, если их вовремя не отключить от сети. Для этой цели разработаны различные системы автоматических защитных отключающих устройств, однако они либо сложны, либо недостаточно чувствительны. Защитные устройства можно условно разделить на релейные и диоднотранзисторные. Релейные в отличие от диодно-транзисторных более просты в изготовлении.
Рассмотрим несколько релейных схем автоматической защиты трехфазного двигателя при случайном отключении одной из фаз питания электрической сети.
Первый способ (рис. 14). В обычную систему запуска трехфазного двигателя введено дополнительное реле Р с нормально разомкнутыми контактами Р1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки «Пуск» через обмотку электромагнита магнитного пускателя МП проходит ток и системой контактов МП1 электродвигатель подклю-
частся к трехфазной сети. При случайном отключении от сети провода А реле Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку магнитного пускателя, который системой контактов МП1 отключит двигатель от сети. При отключении от сети проводов В к С обесточивается непосредственно обмотка магнитного пускателя. В качестве дополнительного реле Р используется реле переменного тока типа МКУ-48.
Второй способ (рис. 15). Защитное устройство основано на принципе создания искусственной нулевой точки , образованной тремя одинаковыми конденсаторами С1СЗ. Между этой точкой и нулевым проводом О включено дополнительное реле Р с нормально замкнутыми контактами. При нормальной работе электродвигателя напряжение в точке 0′ равно нулю и ток через обмотку реле не протекает. При отключении одного из линейных проводов сети нарушается электрическая симметрия трехфазной системы, в точке O’ появляется напряжение, реле Р срабатывает и контактами Р1 обесточивает обмотку магнитного пускателядвигатель отключается. Это устройство обеспечивает более высокую надежность по сравнению с предыдущим. Реле типа МКУ, на рабочее напряжение 36 В. Конденсаторы С1СЗ бумажные, емкостью 410 мкФ, на рабочее напряжение не ниже удвоенного фазного.
Чувствительность устройства настолько высока, что иногда двигатель может отключиться в результате нарушения электрической симметрии, вызванного подключением посторонних однофазных потребителей, питающихся от этой сети. Чувствительность можно понизить, если применить конденсаторы с меньшей емкостью.
Третий способ (рис. 16). Схема защитного устройства аналогична схеме, рассмотренной в первом способе. При нажатии кнопки «Пуск» включается реле Р, контактами Р1 замыкая цепь питания катушки магнитного пускателя МП.
Магнитный пускатель срабатывает и контактами МП1 включает электродвигатель. При обрыве линейных проводов В или С отключается реле Р, при обрыве провода А или С магнитный пускатель МП.
В обоих случаях электродвигатель выключается контактами магнитного пускателя МП1.
По сравнению со схемой защитного устройства трехфазного двигателя, рассмотренной в первом способе, это устройство имеет преимущество: дополнительное реле Р при выключенном двигателе обесточено.
Схемы автоматической защиты трехфазного двигателя при пропадании фазы
Трехфазные электродвигатели при случайном отключении одной из фаз быстро перегреваются и выходят из строя, если их вовремя не отключить от сети. Для этой цели разработаны различные системы автоматических защитных отключающих устройств, однако они либо сложны, либо недостаточно чувствительны. Защитные устройства можно условно разделить на релейные и диоднотранзисторные. Релейные в отличие от диодно-транзисторных более просты в изготовлении.
Рассмотрим несколько релейных схем автоматической защиты трехфазного двигателя при случайном отключении одной из фаз питания электрической сети.
Первый способ (рис. 14). В обычную систему запуска трехфазного двигателя введено дополнительное реле Р с нормально разомкнутыми контактами Р1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки «Пуск» через обмотку электромагнита магнитного пускателя МП проходит ток и системой контактов МП1 электродвигатель подключастся к трехфазной сети.
При случайном отключении от сети провода А реле Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку магнитного пускателя, который системой контактов МП1 отключит двигатель от сети. При отключении от сети проводов В к С обесточивается непосредственно обмотка магнитного пускателя. В качестве дополнительного реле Р используется реле переменного тока типа МКУ-48.
Второй способ (рис. 15). Защитное устройство основано на принципе создания искусственной нулевой точки , образованной тремя одинаковыми конденсаторами С1—C3. Между этой точкой и нулевым проводом О включено дополнительное реле Р с нормально замкнутыми контактами. При нормальной работе электродвигателя напряжение в точке 0′ равно нулю и ток через обмотку реле не протекает. При отключении одного из линейных проводов сети нарушается электрическая симметрия трехфазной системы, в точке O’ появляется напряжение, реле Р срабатывает и контактами Р1 обесточивает обмотку магнитного пускателя—двигатель отключается. Это устройство обеспечивает более высокую надежность по сравнению с предыдущим. Реле типа МКУ, на рабочее напряжение 36 В. Конденсаторы С1C3— бумажные, емкостью 4—10 мкФ, на рабочее напряжение не ниже удвоенного фазного.
Чувствительность устройства настолько высока, что иногда двигатель может отключиться в результате нарушения электрической симметрии, вызванного подключением посторонних однофазных потребителей, питающихся от этой сети. Чувствительность можно понизить, если применить конденсаторы с меньшей емкостью.
Третий способ (рис. 16). Схема защитного устройства аналогична схеме, рассмотренной в первом способе. При нажатии кнопки «Пуск» включается реле Р, контактами Р1 замыкая цепь питания катушки магнитного пускателя МП.
Магнитный пускатель срабатывает и контактами МП1 включает электродвигатель. При обрыве линейных проводов В или С отключается реле Р, при обрыве провода А или С — магнитный пускатель МП.
В обоих случаях электродвигатель выключается контактами магнитного пускателя МП1.
По сравнению со схемой защитного устройства трехфазного двигателя, рассмотренной в первом способе, это устройство имеет преимущество: дополнительное реле Р при выключенном двигателе обесточено.
- PCBWay — всего $5 за 10 печатных плат, первый заказ для новых клиентов БЕСПЛАТЕН.
- Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет.
- Проекты с открытым исходным кодом — доступ к тысячам открытых проектов в сообществе PCBWay!
Да, вроде всё хорошо, кроме того момента, что при пропадании одной из фаз двигатель послужит автотрансформатором и пропустит через себя часть другой фазы и есть ли гарантия, что этого напряжения хватит для отпускания катушки реле-пускателя?
Релейные схемы защиты от пропадания фазы НЕРАБОТОСПОСОБНЫ.
При пропадании фазы, ток, достаточный для удержания реле в замкнутом состоянии, будет поступать со стороны электродвигателя!! (вместо кружочка, обозначающего эл.двигатель нарисуйте внутреннюю схему с обмотками и карандашиком проследите путь тока 🙂 И не надо забывать, что эл. двигатель по сути тот же трансформатор и если на две обмотки будет подано напряжение, то в третьей обмотке однозначно будет ЭДС. Защита возможна ТОЛЬКО путем анализа и регистрации АСИММЕТРИИ фаз и напряжений при пропадании питающей фазы. Схема с конденсаторами вполне работоспособна.
За базар отвечаю, электромеханик с 35-ти летним стажем (диплом радиоинженера отличием).
Много раз использовал схему с двумя пускателями. Все отлично работает.В середине 90-х работал энергетиком в колхозе, денег не было и это был единственно доступный способ защиты насосов на скважинах.
Подтверждаю, релейные схемы полная чушь, как и схемы на двух пускателях. Они могут работать, только если на контакты двигателя повесить нагрузку в пару киловатт, чтобы часть наводок глушилась нагрузкой. Но кому это надо? Мотать лишнюю энергию. Ещё есть вариант получше, который возможно будет работать, взять три импульсных блока питания на 12 вольт, запитать каждый из них от разной фазы, и включить в Цепь пускателя три нормально разомкнутых реле с катушкой на 12 вольт. Вот блок питания вряд ли позволит работать от такого нестабильного напряжения и защита отключит блок и сработает реле разомкнув Цепь.
у меня несколько насосов поставил 3 реле на каждую фазу их н о контакты послед . в цепь управления всех насосов.
Защита трехфазного двигателя
Способы автоматической защиты трехфазного двигателя при отключении фазы электрической сети.
Трехфазные электродвигатели при случайном отключении одной из фаз быстро перегреваются и выходят из строя, если их вовремя не отключить от сети. Для этой цели разработаны различные системы автоматических защитных отключающих устройств, однако, они либо сложны, либо недостаточно чувствительны.
Устройства защиты можно условно разделить на релейные и диодно-транзисторные. Релейные в отличие от диодно-транзисторных более просты в изготовлении.
Рассмотрим несколько релейных схем автоматической защиты трехфазного двигателя при случайном отключении одной из фаз питания электрической сети.
Первый способ (рис.1)
Это самый распространенный способ, проверенный временем. Защита двигателя от отключения одной фазы обеспечивается применением теплового реле ТЗ. Смысл этой защиты состоит в том, что постоянная нагревания теплового реле подбирается таким образом, что и постоянная нагревания электродвигателя. То есть проще говоря, реле нагревается так же, как и двигатель. И при превышении температуры выше допустимой реле отключает двигатель. При отключении одной фазы, ток через другие фазы резко возрастает, двигатель и тепловое реле начинают быстро нагреваться, что вызывает срабатывание теплового реле.
Способ хорош и тем, что обеспечивает и защиту двигателя от перегрузки и пробоя одной фазы на корпус. Но для надежной защиты от пробоя на корпус, двигатель обязательно должен быть заземлен или занулен.
Недостаток этого способа в том, что тепловые реле достаточно дороги (примерно столько же, сколько и пускатель) и для надежной защиты его нужно достаточно точно подбирать и настраивать. В идеале его номинальный ток должен быть такой же, как и у двигателя.
Второй способ (рис. 2).
В обычную систему запуска трехфазного двигателя введено дополнительное реле Р с нормально разомкнутыми контактами Р1. При наличии напряжения в трехфазной сети обмотка дополнительного реле Р постоянно находится под напряжением и контакты Р1 замкнуты. При нажатии кнопки «Пуск» через обмотку электромагнита магнитного пускателя МП проходит ток и системой контактов МП1 электродвигатель подключается к трехфазной сети. При случайном отключении от сети провода А реле Р будет обесточено, контакты Р1 разомкнутся, отключив от сети обмотку магнитного пускателя, который системой контактов МП1 отключит двигатель от сети. При отключении от сети проводов В и С обесточивается непосредственно обмотка магнитного пускателя. В качестве дополнительного реле Р используется реле переменного тока типа МКУ-48.
Третий способ (рис 3).
Защитное устройство основано на принципе создания искусственной нулевой точки (точка 1′), образованной тремя одинаковыми конденсаторами С1—СЗ. Между этой точкой и нулевым проводом 0′ включено дополнительное реле Р с нормально замкнутыми контактами. При нормальной работе электродвигателя напряжение в точке 0′ равно нулю и ток через обмотку реле не протекает. При отключении одного из линейных проводов сети нарушается электрическая симметрия трехфазной системы, в точке 0′ появляется напряжение, реле Р срабатывает и контактами Р1 обесточивает обмотку магнитного пускателя—двигатель отключается. Это устройство обеспечивает более высокую надежность по сравнению с предыдущим. Реле типа МКУ, на рабочее напряжение 36 В. Конденсаторы С1—СЗ— бумажные, емкостью 4—10 мкф, на рабочее напряжение не ниже удвоенного фазного.
Чувствительность устройства настолько высока, что иногда двигатель может отключиться в результате нарушения электрической симметрии, вызванного подключением посторонних однофазных потребителей, питающихся от этой сети. Чувствительность можно понизить, применив конденсаторы меньшей емкости.
Четвертый способ (рис. 4).
Схема защитного устройства аналогична схеме, рассмотренной во втором способе. При нажатии кнопки «Пуск» включается реле Р, контактами Р1 замыкая цепь питания катушки магнитного пускателя МП.
Магнитный пускатель срабатывает и контактами МП1 включает электродвигатель. При обрыве линейных проводов В или С отключается реле Р, при обрыве провода А или С — магнитный пускатель МП.
В обоих случаях электродвигатель выключается контактами магнитного пускателя МП1.
По сравнению со схемой защитного устройства трехфазного двигателя, рассмотренной в первом способе, это устройство имеет преимущество: дополнительное реле Р при выключенном двигателе обесточено.
Всего хорошего, пишите to Elremont © 2005
Защита 3-фазного двигателя при отключении фазы электрической сети.
Если в Вашем доме или мастерской имеются самодельные станки, в которых в качестве электропривода применён 3-фазный двигатель, то при случайном пропадании одной из фаз, двигатель может перегреться и выйти из строя.
Обычно для запуска таких двигателей применяют магнитный пускатель с катушкой на 380 вольт.
Если пропадет фаза, к которой подключена катушка пускателя, то двигатель отключится. А как быть, если пропадёт та фаза, к которой катушка пускателя не подключена?
Здравствуйте уважаемые читатели и подписчики моего канала.
Существуют различные схемы для реализации такой защиты, во всех из них используется дополнительное реле. Сегодня Вашему вниманию я хочу предложить одну из них. Сначала рассмотрим схему простого нереверсивного пускателя.
При нажатии кнопки «пуск» катушка пускателя «ПМ» включается и блокирует кнопку «пуск» нормально-разомкнутыми контактами «ПМ», двигатель включается. Для выключения нажимается кнопка «стоп».
Для защиты двигателя здесь установлено тепловое реле Т. Если на двигатель увеличится допустимая нагрузка, то это реле «сработает», и разорвёт цепь питания пускателя нормально-замкнутыми контактами «Т» и двигатель отключится. Тоже произойдёт, если пропадёт фаза «А» или «С».
При пропадании фазы «В» двигатель начнёт греться, но так как тепловое реле имеет «инерционность», то двигатель может выйти из строя. К тому же в «самоделках» тепловое реле может вообще отсутствовать.
Я предлагаю Вам рассмотреть схему, где выполнена защита от такого случая. Дополнительная цепь обозначена зелёным цветом.