Вспомогательные пусковые устройства дизельного двигателя

Пусковые устройства дизелей

технические науки

  • Борисов Геннадий Александрович , доктор наук, профессор, профессор
  • Ичанкин Юрий Викторович , аспирант
  • Рязанский Государственный Агротехнологический Университет им. П.А.Костычева
  • НАДЕЖНОСТЬ ПУСКА ХОЛОДНОГО ДВИГАТЕЛЯ
  • ВСПОМОГАТЕЛЬНЫЙ ДВИГАТЕЛЬ
  • ПУСК
  • ДИЗЕЛЬНЫЕ ДВИГАТЕЛИ
  • СТАРТЕР
  • ХОЛОДНЫЙ ДВИГАТЕЛЬ

Похожие материалы

Важным качеством дизельного двигателя является его приспособленность к запуску в холодном состоянии. В ГОСТ Р 54120-2010 термин «холодный двигатель», определен как: двигатель при температуре его деталей, охлаждающей жидкости, масла и топлива, отличающейся от температуры окружающего воздуха не более чем на 1°С (без учета погрешностей измерений).

Также согласно ГОСТ Р 54120-2010 стартерная система пуска должна обеспечивать необходимую для надежного пуска холодного двигателя частоту вращения коленчатого вала в соответствии с требованиями к пусковым качествам двигателей и требованиями к двигателю данного ГОСТ, с общим числом попыток пуска не менее трех [1].

При создании новых конструкций двигателей стремятся снизить его минимальную пусковую скорость вращения коленчатого вала с целью уменьшения мощности, веса, стоимости и габаритов пусковых систем, а также повысить надежность пуска.

Пуск дизеля возможен при помощи следующих способов:

  1. Ручной пуск;
  2. Электростартерный пуск;
  3. Пневмостартерный пуск;
  4. Воздушный (цилиндровый) пуск;
  5. Пуск вспомогательным поршневым двигателем;
  6. Пуск инерционным стартером.

Необходимые для пуска двигателя мощность, скорость вращения и вращающий момент пускового устройства (ПУ), находят из выражений:

л.с.,

  • P— мощность пускового устройства;
  • Mс — момент коленчатого вала двигателя ;
  • nmin— минимальная пусковая скорость вращения коленчатого вала;
  • ,85- к.п.д. зубчатой передачи;

об/мин;

  • n — скорость вращения пускового устройства;
  • i — передаточное отношение между шестерней стартера и венцом маховика двигателя;

кГм,

где M — вращающий (пусковой) момент пускового устройства.

Пуск дизелей от руки возможен для маломощных и двигателей средней мощности. Это актуально для двигателей устаревших конструкций, имеющих специальные приспособления и маломощных дизель- генераторных установок (ДГУ). Современные маломощные двигатели, устанавливаемые на легковые автомобили, коммерческую технику и малогабаритную спецтехнику, как правило, не приспособлены для ручного запуска.

Электростартерный пуск является основным способом пуска для большинства видов дизельной техники. Для воспламенения топлива нужна достаточно высокая скорость вращения коленчатого вала при пуске, это необходимо для получения достаточно большой температуры в конце хода сжатия. При этом важно чтобы сжатый воздух не успел охладиться через стенки цилиндра и камеры сгорания (КС) и чтобы утечка воздуха через компрессионные кольца заметно не влияла на давление в КС.

А в дизелях классической конструкции, скорость движения плунжера топливного насоса высокого давления (ТНВД) зависит от пусковой скорости и определяет достаточное давление впрыска топлива.

Момент сопротивления вращению и собственные пусковых качества двигателя — это два основных фактора влияющих на подбор стартера по пусковой мощности. Большую мощность стартеров дизельных двигателей определяют возросший крутящий момент, высокие степень сжатия и минимальная скорость вращения. А повышение напряжения до 24 вольт позволяет получить большую мощность электродвигателя стартера при меньших размерах. При напряжении 12 вольт, была бы слишком большая сила тока в цепи электродвигателя стартера, что привело бы к увеличению его габаритов и емкости аккумуляторных батарей. Сопротивление обмоток стартера обычно очень низкое и не превышает 1 мОм.

Рис. 1. Характеристики электродвигателя с последовательным возбуждением

Пусковому (начальному) режиму стартера соответствуют следующие условия: момент пуска- nст=0, электродвигатель потребляет максимальный ток короткого замыкания Iк.з., вращающий момент достигает максимума. А пусковая частота вращения коленчатого вала дизельных двигателей находится в пределах 150-250 об/мин, что в 2 – 3 раза больше, чем у бензиновых.

Максимальный крутящий момент Mвр развивается при малой частоте вращения якоря. (Рис.1.) При этом сила тока в обмотке электродвигателя может достигать наибольшего значения и составлять 200- 900 А, в зависимости от модели стартера.

По мере увеличения частоты вращения якоря, сила тока в обмотках уменьшается и соответственно уменьшается момент на валу якоря. Такой закон изменения крутящего момента наиболее благоприятен для пуска двигателя, так как в начале проворачивания коленчатого вала момент сопротивления наибольший [2].

Читайте также:  Мастер по ремонту швейных машин оверлоков

Полезная мощность стартера P1 (л.с.):

  • меньше электромагнитной на величину механических и магнитных потерь: Р1= Рэл— Рмех— Рмагн;
  • подсчитывается по формуле: , где M1 — вращающий момент, кГм;
  • число оборотов якоря в минуту.
  • равна нулю при заторможенном якоре, когда n1 =0, и при холостом ходе, когда M1=0 [3].

Разделив полезную мощность стартера на угловую скорость вращения якоря ω, найдем полезный момент стартера: [13]

.

Согласно ГОСТ Р 54120-2010 термин «надежный пуск двигателя» определяется как: «Пуск двигателя, оборудованного всеми навесными агрегатами, на основном топливе не более чем за три попытки пуска «холодного двигателя» и не более чем за две попытки пуска «горячего двигателя» и двигателя после «тепловой подготовки».

Надежность электрического пуска сильно зависит от начальной скорости вращения коленчатого вала, которая в свою очередь определяется максимальным вращающим моментом Mвр и пусковой мощностью стартера Pпол. Повысить эти параметры можно увеличением силы тока в цепи и напряжения на зажимах стартера. А достичь этого возможно лишь снизив падение напряжения на выводах аккумуляторной батареи, уменьшив её внутреннее сопротивление путем увеличения ёмкости и температуры электролита, а также применением контактных соединительных проводов малого сопротивления и поддерживая стартер в исправном техническом состоянии.

На данный момент на отечественных дизельных тракторах и грузовых автомобилях применяют стартеры следующих моделей:

Таблица 1. Технические данные некоторых типов стартеров [5]

Дополнительные пусковые устройства для дизельных двигателей (вспомогательные детали)

Из-за того, что утечки и потери тепла уменьшают давление и температуру топливо-воздушной смеси в конце такта сжатия, то чем холоднее дизельный двигатель, тем труднее его завести. Эти факты делают необходимым и важным использование вспомогательных пусковых устройств. Предельная температура запуска зависит от типа двигателя. Двигатели с предкамерой и с вихревой камерой оснащаются накальными свечами (свечами предварительного накала) (2) в своих вторых камерах сгорания, которые работают как горячее пятно.

В случае двигателей с непосредственным впрыском (DI) это горячее пятно смещено на периферию камеры сгорания. Большие двигатели DI, устанавливаемые на грузовики, работают либо с предварительным подогревом воздуха во впускном коллекторе (запуск с пламенем), либо со специальным, ранее воспламененным топливом, которое впрыскивается в поступающий воздух. Современные накальные свечи используются практически везде. (1 — форсунка; 3 — вихревая камера).

Накальная свеча с закрытым элементом

Рис. Накальная свеча с закрытым элементом:
1. Контактная шпилька; 2. Круглая гайка; 3. Изолирующая шайба; 4. Уплотнение; 5. Корпус накальной свечи; 6. Резьба для вкручивания; 8. Кольцевой зазор; 9. Коническое седло.

Накальная свеча с закрытым элементом имеет форму трубчатого нагревательного элемента. Она включает в себя не подверженную коррозии накальную трубку (12), внутри которой вставлена нить (7) накала и засыпан порошок окиси магния (10) с целью изоляции и устойчивости к вибрации.

Рис. Зависимость температуры от удельного сопротивления:
1. S-RSK; 2. GSK2; 3. (Ом*мм2)/м; 4. Удельное сопротивление; 5. Температура.

В обычной накальной свече (тип S-RSK) и в более новой ее версии (тип GSK2) эта нить накала имеет нагревательную нить (11) на своем конце. По сравнению с обычной накальной свечой эта более новая версия достигает температуры воспламенения быстрее, а также имеет более низкую рабочую температуру.

Это означает, что даже после запуска двигателя эта накальная свеча может оставаться выключенной до 3 минут, что вносит вклад в понижение концентрации вредных выбросов и уменьшение шумов. Управляющая нить накала с положительным температурным коэффициентом сопротивления (РТС) соединена последовательно с нагревательным элементом. Характеристика с РТС означает, что сопротивление управляющей нити накала возрастает вместе с температурой и ограничивает температуру накальной свечи, которая некритична для материала трубки свечи. Соответствующий подбор управляющей нити накала и нагревательной нити (спирали) обеспечивает достижение пусковой температуры за 3 — Ю сек. Нагревательный элемент (т.е. управляющая нить накала + нагревательная нить) запрессован в корпус накальной свечи так, что он уплотнен от проникновения газов. Электрическое соединение для однотактной версии накальной свечи производится параллельно.

Накальная свеча с воспламенением

Накальная свеча с воспламенением нагревает поступающий воздух путем сжигания топлива. Обычно топливоподкачивающий насос системы впрыска топлива подает топливо к свече с пламенем через соленоидный клапан. Соединение свечи снабжено фильтром и комбинированным устройством, которое обеспечивает прохождение точного количества топлива в соответствии с конкретной моделью двигателя. Топливо затем испаряется в трубке испарителя, окружающей накальную свечу и смешивается с поступающим воздухом. Образующаяся смесь воспламеняется у нагретого до 1000°С элемента у конца свечи с воспламенением.

Читайте также:  Устройство рулевого управления машины

Блок управления накалом

Для включения нагельных свечей используется блок управления накалом с силовым реле питания и несколькими электронными переключающими блоками. Они управляют продолжительностью накала накальных свечей или имеют защитные или контрольные функции. Используя свои диагностические функции, более совершенные блоки управления накалом способны также определить неисправность отдельных свечей и информировать об этом водителя. Входы управления ECU имеют форму многоконтактных штекеров и для предотвращения спадов напряжения на накальных свечах обеспечивают прохождение тока через резьбовые соединения и гнезда.

Функциональная последовательность

Функции выключателя накальных свечей и стартера на дизельном двигателе подобны функциям выключателя зажигания и стартера, используемого и бензиновом двигателе. Поворот ключа в положение «зажигание включено» начинается процесс предварительного накала и контрольная лампа накальных свечей загорается. Как только она погаснет, то это указывает на то, что накальные свечи нагреты достаточно для запуска и можно включать стартер. В следующей фазе запуска частицы впрыснутого топлива воспламеняются в горячем и сжатом воздухе. Образуемое в результате тепло ведет к началу процесса сгорания. В фазе прогрева, следующей за успешным запуском двигателя, последующий процесс подогрева вносит вклад в устойчивую работу двигателя (без перебоев) и следовательно, практически бездымную работу на холостых оборотах. В то же самое время, когда двигатель холодный, предварительный нагрев уменьшает шум от сгорания. Предохранительное отключение накальных свечей предотвращает разряд аккумуляторной батареи, если двигатель не заводится.

Блок управления предварительным накалом может быть соединен с блоком электронного управления (ECU) системы электронного управления дизельным двигателем (EDC) так, что информация, имеющаяся в блоке управления системы EDC может быть использована для оптимального управления накальными свечами в соответствии с конкретными условиями работы. Это представляет дополнительную возможность уменьшения уровня голубого дыма и шумов.

1. Выключатель накальных свечей и стартера; 2. Стартер; 3. Контрольная лампа накальных свечей; 4. Выключатель нагрузки; 5. Накальные свечи; t . Время предварительного накала; t . Время готовности к запуску; t . Время последующего накала (нагрева). 6. Время t.

Пусковые устройства автомобилей: вспомогательный запуск двигателя машины

Главная страница » Пусковые устройства автомобилей: вспомогательный запуск двигателя машины

Владельцам легковых автомобилей, скорее всего, знакомы ситуации, когда пытаясь завести машину стартером, ничего кроме холостых щелчков получить не удаётся. Подобные истории утери ёмкости аккумулятора нередко заканчиваются операцией так называемого «прикуривания». Операцией запуска через кабели-перемычки подачей напряжения на стартер от аккумулятора другого автомобиля. Зарубежные автомобилисты традиционно используют «службу помощи на дороге», специалисты которой при помощи относительно небольшой «коробочки» быстро заводят машину. Подобного рода «малышка», представляющая пусковое устройство (поддержку стартера) автомобиля, способна без особого труда завести транспорт с «подсевшим» аккумулятором. Рассмотрим подробнее пусковую концепцию.

Общая информация о вспомогательных пусковых модулях автомобиля

Такого рода системы, доступные на рынке, небольшие по весу и габаритам, способны обеспечить запуск машины, когда по каким-то причинам «садится» основной аккумулятор. Время от времени внешние пусковые автомобильные устройства требуют заряда, но на эту операцию достаточно не так много времени и денег. Подход пусковым модулем явно выигрывает по отношению к ситуации с «прикуриванием» от сторонних авто.

Существует множество различных конструктивных вариантов внешних пусковых устройств, но практически все (за исключением эксклюзивных пусковых моделей) обладают одинаковым базовым исполнением. Пусковой модуль обычно выполнен в виде прямоугольной коробки, внутри которой находится герметичная свинцово-кислотная или гелевая аккумуляторная батарея.

Одна из самых последних разработок – модуль вспомогательного старта, подключаемый через стандартный «прикуриватель» в салоне автомобиля. Удобная, облегчённая, безопасная система

Аккумуляторная батарея оснащается соединительными кабелями, которые, в свою очередь, оснащаются зажимами «крокодил». Внешняя оболочка прибора вспомогательного старта герметична, благодаря чему исключается вероятность разлива или утечки электролита, независимо от положения устройства. Аккумулятор, находящийся внутри оболочки также герметично закрыт.

Технические характеристики внешних модулей старта

Сила тока в амперах и резервная мощность внешних пусковых устройств автомобилей различаются в зависимости от модельного исполнения. Соответственно, имеется возможность покупки пускового устройства, которого едва хватает для запуска гольф-кара.

Но вместе с тем, имеется также выбор пусковых автомобильных устройств, способных заводить мощные дизельные двигатели. Мощные внешние автомобильные пусковые системы способны обеспечить десяток запусков мотора автомобиля до очередного заряда, и поддерживают работоспособность в суровых погодных условиях.

Основные технические характеристики модулей вспомогательного старта обычно указываются непосредственно на корпусе. Однако более полные характеристики содержит инструкция на пусковой прибор

Конструктивное исполнение, с точки зрения функционала, также различается. Кроме простой конфигурации, в дополнение к аккумулятору и соединительным кабелям, некоторые пусковые модули вспомогательного старта обеспечивают функции:

  • воздушного компрессора,
  • аварийных огней,
  • радиоприемника,
  • розеток на 12 вольт под питание мобильных устройств,
  • инвертора.
Читайте также:  Схема автомат коробки автомобиля

Прямых требований к обязательному наличию отмеченных функций, конечно же, нет. Владельцу автомобиля вполне достаточно приобрести недорогое простое внешнее пусковое устройство, где перечисленный функционал отсутствует. Однако, как показывает практика эксплуатации машин, нередко обозначенные функции становятся востребованными в дороге.

Безопасное использование внешнего пускового устройства

Чтобы безопасно использовать внешнее пусковое устройство, потенциальному владельцу автомобиля требуется следовать той же базовой процедуре, что при обычном запуске стартера машины. Следует также учитывать какие-то особенности процедуры запуска, если таковые приняты для конкретной марки машины.

В обычном варианте эксплуатации, согласно инструкции, достаточно прежде подключить положительный кабель внешнего пускового устройства к положительной клемме главной батареи. Затем подключается отрицательный кабель надежным контактом с массой.

Подключать внешние пусковые устройства под капотом автомобиля несложно. Достаточно подцепить зажимы «крокодил» на соответствующие клеммы аккумулятора

В принципе, вполне допустимо подключить минусовой кабель-переходник внешнего пускового устройства непосредственно к минусовому выводу аккумулятора.

Однако, как показала практика, безопаснее использовать вариант с подключением отрицательного проводника на массу двигателя, или на шасси техники. Несмотря на схожесть с процедурой стандартного запуска стартера, использование внешнего пускового устройства всё-таки сопровождается некоторыми нюансами.

Так, учитывая, что кабели большинства выпускаемых пусковых устройств имеют укороченную длину, такое устройство обычно приходится располагать в моторном отсеке. Этим создаётся потенциальная опасность, поэтому следует убедиться, что устройство не касается:

  • лопастей вентилятора радиатора,
  • передаточных ремней,
  • шкивов,

или размещено таким образом, когда есть риск нарушения работы любых электрических соединений или датчиков.

Использование пусковых устройств автомобиля для других целей

Автомобильное внешнее пусковое устройство, в первую очередь, предназначено для пуска стартера, но с не меньшим успехом используется для разных других целей. Как правило, даже самые простые недорогие внешние пусковые устройства обычно поставляются с 12-вольтовой вспомогательной розеткой. Предназначение этой розетки — питание любого 12-вольтного вспомогательного прибора.

Использование устройства вспомогательного пуска для других целей помимо основной цели. Например, для подкачки автомобильных шин на случай снижения давления воздуха

На реальных примерах пусковое устройство, помимо запуска двигателя используется:

  • для зарядки мобильного телефона,
  • питания ноутбука,
  • запуска подкачивающего шины насоса и т.п.

Такой адаптер питания хорош на случаи автомобильных путешествий, выездов на рыбалку, на случай автомобильного ремонта, обеспечивая независимое питание электроники без потенциального разряда автомобильного аккумулятора.

Конечно, важно помнить, что внутри корпуса устройства запуска автомобиля обычно помещена герметичная свинцово-кислотная батарея. Риски протечки минимальны, но полностью не исключены.

Поэтому учитывая фактор обеспечения полной безопасности, рекомендуется выбирать устройство внешнего запуска, оснащённое встроенным гелем или пористый сорбент на основе стекловолокна (AGM).

Внешние пусковые устройства автомобиля своими руками

Поскольку модуль внешнего запуска представляет конструкцию герметичной свинцово-кислотной батареи, оснащённую короткими кабелями-перемычками, технически такое устройство вполне возможно изготовить самостоятельно.

Стоит отметить: приобретение внешнего модуля запуска может оказаться дешевле, чем сборка собственными руками, так как может потребоваться достаточно мощная дополнительная батарея.

Для примера фирменная концепция: 1 – индикатор мощности; 2 – кнопка подачи мощности: 3 – индикатор ошибки; 4 – индикаторы уровня заряда; 5 – индикатор перегрузки; 6 – кнопка ручного управления; 7 – кнопка режима освещения; 8 – зажимы «крокодил»

Нередко в ремонтных автомобильных мастерских можно видеть простые самодельные конструкции, где попросту просто связаны вместе несколько аккумуляторов и вся группа установлена на ручной тележке.

Аккумуляторы подключаются параллельно и дополняются кабелями соответствующего сечения. Этот вариант простой и эффективный, но с точки зрения мобильности и габаритов, явно неприемлемый для автомобилистов.

Чтобы создать своими руками внешний блок запуска автомобиля, наиболее приемлемым и безопасным способом видится приобретение герметичной, необслуживаемой батареи питания. Аккумулятор должен обладать высокими характеристиками пускового тока и достаточной силой проворачивания коленчатого вала «на холодную». Также потребуется изготовить подходящий надёжный корпус для размещения аккумулятора.

Батарейному отсеку следует уделить серьёзное внимание. Конструкции свинцово-кислотных батарей не текут в случае опрокидывания, но способны протекать по мере старения, перезарядки или по причине иных факторов. Самым безопасным типом батареи видится гелевая или AGM. Однако оба продукта достаточно дорогие по сравнению с герметичными свинцово-кислотными аккумуляторами.

Видео обзор на пусковое устройство для автомобиля

Обзорный видеоролик ниже раскрывает практически всю секретную часть этих маленьких мощных «коробочек», способных одним движением ключа стартера помочь завести мотор:

Оцените статью