- Назначение воздухозаборника и особенности системы подачи воздуха в двигатель
- Основные системы наддува
- Система подачи воздуха на бензиновых двигателях
- Система подачи воздуха в дизельный двигатель
- Как увеличить подачу воздуха в двигатель
- Система впуска, как увеличить подачу воздуха в двигатель
- Конструкция впускной системы двигателя
- Обзор элементов системы впуска двигателя
- Резонатор
- Корпус воздушного фильтра
- Дроссельный патрубок
- Дроссельная заслонка
- Впускной коллектор
- Доступные методы увеличения подачи воздуха
- Установка воздушного фильтра нулевого сопротивления
- Холодный впуск
- Установка впускного коллектора с иной геометрией
- Резюме
- Подача воздуха в двигатель: устройство и схема работы
- Система подачи воздуха на бензиновых двигателях
- Система выпуска
- Лямбда-зонд. Диагностика и замена
- Удаление сажевого фильтра FAP/DPF
- Система подачи воздуха в дизельный двигатель
- Второй претендент – выпускной коллектор
- Как увеличить подачу воздуха в двигатель: доступные способы
- Электромагнитный клапан системы изменения длины впускного коллектора
- Ресивер (вакуумный бачок) системы изменения длины впускного коллектора
- Требования к составу топливо-воздушной смеси
Назначение воздухозаборника и особенности системы подачи воздуха в двигатель
Принцип действия двигателя внутреннего сгорания заключается в преобразовании тепловой энергии сгоревшего топлива в механическую. Для этого в камеру сгорания поступает горючая смесь, состоящая из топлива и воздуха, а затем воспламеняется. Оптимальное соотношение компонентов обеспечивает получение максимальных динамических характеристик. За забор и впуск воздуха в цилиндры двигателя отвечает соответствующая система питания.
Основные системы наддува
Независимо от конструкции, воздух в двигатель попадает из атмосферы. Это актуально как для бензиновых, так и дизельных модификаций. В общем случае в схему входят:
- воздухозаборник;
- фильтр;
- впускной патрубок;
- турбокомпрессор;
- дроссельная заслонка (для бензиновых двигателей);
- промежуточный радиатор;
- впускной коллектор.
Турбокомпрессором (турбиной) оснащают дизельные моторы, но принудительным наддувом оборудуют также и работающие на бензине. Наддув позволяет силовому агрегату развить более высокую мощность за счёт генерации большего давления.
Система подачи воздуха на бензиновых двигателях
Конструкция систем питания воздухом моторов любых моделей принципиальных отличий не имеет. Первый элемент — воздухозаборник, компонент двигателя, который отвечает за сообщение с атмосферой. Его устанавливают под капотом так, чтобы эффективно забирать воздушные массы на всех скоростных режимах. Раструб воздухозаборника закреплён корпусом головной оптики с правой или с левой стороны авто, около радиаторной решётки.
После попадания в заборник поток движется в фильтр. Это обязательный компонент воздушной системы двигателя, отвечающий за очистку потока от пыли. Если мельчайшие частицы из атмосферы будут беспрепятственно поступать в ДВС, начнётся интенсивный износ стенок цилиндров, что приведёт к поломке мотора. Фильтр очистки поступающего воздуха включает фильтрующий элемент и корпус. Устанавливают его в подкапотном пространстве недалеко от воздухозаборника, к корпусу авто крепят через резиновые демпферы.
Миновав фильтр, воздушный поток попадает во впускной патрубок. Это соединительная труба, предназначенная для дистанцирования элементов системы. В нижней части патрубка делают «ловушку» для воды. Это небольшое углубление, куда стекает жидкость, попавшая в устройство для подачи воздуха после преодоления глубоких луж.
В корпусе фильтра или во впускном патрубке устанавливают датчик, измеряющий скорость движения воздушных масс.
Регулирует обороты коленвала дроссельная заслонка. Механизм напрямую связан с педалью акселератора, при нажатии на которую увеличивается воздушный поток. В корпусе дросселя расположен регулятор холостых оборотов и датчик положения заслонки. Первый отвечает за поддержание минимального вращения коленвала, второй — передаёт информацию блоку управления о степени открытия механизма.
После дроссельной заслонки поток попадает во впускной коллектор. Это последняя деталь в схеме на пути подачи воздуха в цилиндры. Делают его из металла (сплава на основе алюминия) или пластика. Коллектор отвечает за формирование горючей смеси, которая в дальнейшем попадает в камеру сгорания. Впрыск горючего осуществляют инжекторы, установленные непосредственно в корпусе детали.
Система подачи воздуха в дизельный двигатель
Компоновка мотора, работающего на солярке, от бензинового практически не отличается. В схеме питания отсутствует дроссельная заслонка, установлен турбокомпрессор и реализован более сложный принцип формирования топливной смеси. В двигатель с дизельной аппаратурой и турбиной воздушный поток попадает через заборник, который представляет собой полный аналог элемента бензинового мотора. Очистка воздушной массы также происходит в фильтре. Однако для силовых агрегатов, устанавливаемых на спецтехнику, предусмотрена многоступенчатая фильтрация. В условиях сильной запылённости используют инерционный предварительный очиститель и другие подобные решения.
После фильтра воздушные массы попадают в центробежный нагнетатель. Турбина работает за счёт энергии отработанных газов и предназначена для генерации большего крутящего момента. Поток, проходя через нагнетатель, нагревается. Для его охлаждения предусмотрен промежуточный теплообменник — интеркулер. Элемент позволяет незначительно повысить мощность ДВС по сравнению с базовыми характеристиками.
Последний элемент системы — коллектор. В отличие от бензинового, в дизельном нет дроссельного узла, а воздух беспрепятственно попадает в цилиндры. Генерация крутящего момента регулируется количеством впрыскиваемого топлива. Однако в современных моторах заслонка всё же есть, но выполняет она другую функцию. Совместно с клапаном EGR она способна улучшить экологические показатели мотора на переходных режимах работы. Снижение токсичности выхлопных газов происходит за счёт повторного их использования при формировании горючей смеси.
Система регенерации выхлопных газов позволяет снизить их токсичность, но в то же время существенно сокращает ресурс силового агрегата. Моторы, оснащённые этой технологией, работают в 4-5 раз меньше до капитального ремонта.
Как увеличить подачу воздуха в двигатель
От количества и качества поступающих в мотор воздушных масс зависят его эксплуатационные характеристики. Для генерации большей мощности владельцы авто пытаются увеличить подачу воздуха. Для этого в конструкцию силового агрегата вносят изменения. Установка модернизированной системы питания позволяет получить несколько дополнительных лошадиных сил.
Наиболее простой и бюджетный способ — установка фильтра нулевого сопротивления взамен штатного. Однако этот метод используют на спортивных и специально подготовленных авто. Для стоковых двигателей прирост мощности будет минимален, а расходы на более частую замену фильтрующего элемента существенно возрастут.
Часто повышают крутящий момент за счёт доработки штатной системы подачи воздуха. Способ подразумевает комплексный подход к модернизации. В первую очередь измеряют местные сопротивления движению потока, затем меняют конфигурацию воздухозаборника, корпуса фильтра, впускного патрубка так, чтобы движению воздуха ничего не мешало.
Существенно повысить «резвость» атмосферного мотора позволяет электрический нагнетатель. Монтаж турбины осуществляют во впускной патрубок. В результате улучшается общий процесс смесеобразования, мощность двигателя растет, повышается эластичность во время работы ДВС на разных режимах, автомобиль демонстрирует улучшенные динамические характеристики.
Увеличить поступление воздушных масс позволяет вынос воздухозаборника из подкапотного пространства. «Холодный впуск» обеспечивает снижение температуры в коллекторе, а также незначительное повышение давления во время движения. Однако вынос воздухозаборника сопряжён с риском попадания в него воды, что может привести к гидроудару и поломке двигателя.
Система питания двигателя — сложный компонент, исправность которого обеспечивает нормальное функционирование силового агрегата. Для улучшения динамических характеристик возможен тюнинг отдельных элементов, отвечающих за подачу воздуха в цилиндры.
Система впуска, как увеличить подачу воздуха в двигатель
Воздух – крайне необходимый элемент для образования рабочей смеси. Многое зависит от атмосферного давления, количества воздуха, его чистоты. Немаловажна и геометрия движения впускного воздуха, от чего зависит стабильность работы двигателя, а также его КПД.
Конструкция впускной системы двигателя
Простейшая система впуска инжекторного двигателя состоит из следующих деталей:
- резонатор (воздухозаборник),
- корпус воздушного фильтра с фильтром,
- резиновая гофра от корпуса фильтра до дроссельной заслонки,
- ДМРВ или датчик абсолютного давления и датчик температуры воздуха,
- дроссельная заслонка с регулятором холостого хода (РХХ) и датчик положения дроссельной заслонки (ДПДЗ),
- впускной коллектор (ресивер).
Обзор элементов системы впуска двигателя
Резонатор
Представляет собой пластиковый воздухозаборник, который, как правило, установлен под фарами возле радиаторов. Патрубок устанавливается по ходу движения автомобиля, чтобы захватывался поток воздуха.
Конструкция воздухозаборника осуществлена таким образом, чтобы избежать попадания воды в цилиндры.
Корпус воздушного фильтра
Пластиковый короб, в котором устанавливается фильтр. Корпус максимально герметичен, обычно имеет отстойник для мусора.
Фильтр расположен во всей площади корпуса, в составе которого целлюлозная бумага с прорезиненными краями. Рассчитан фильтр таким образом, чтобы обеспечить необходимое сопротивление.
Дроссельный патрубок
Обычно представляет собой гофрированный патрубок. В гофре имеется отдельный патрубок, через который во впускной коллектор попадают картерные газы. К патрубку присоединяется ДМРВ, крепится хомутами с двух сторон во избежание подсоса неучтенного воздуха.
Датчик имеет в своей основе платиновую проволоку и никелевую сетку в качестве чувствительного элемента. Работа датчика заключается в подсчете впускаемого воздуха, а полученная информация уже передается на электронный блок управления.
Получив данные от датчика массового расхода воздуха, блок управления уже знает, в каком количестве подать топливо.
Дроссельная заслонка
Дроссельная заслонка нужна для дозирования впускаемого воздуха, непосредственно влияющее на количество впрыскиваемого топлива.
За положением открытия заслонки отвечает электронный потенциометр ДПДЗ (датчик положения дроссельной заслонки). В зависимости от открытия заслонки корректируется количество подачи топлива.
Устанавливаемый либо на дросселе, либо на коллекторе, регулятор холостого хода (РХХ), отвечает за поток воздуха в обход закрытого дросселя в режиме холостого хода.
Впускной коллектор
Впускной коллектор равномерно распределяет воздух по цилиндрам, создавая необходимую геометрию потока, а также играет роль в смесеобразовании.
Может быть пластиковым или железным. У современных двигателей ресивер с изменяемой геометрией потока воздуха, а за геометрию отвечают двигающиеся шторки.
Доступные методы увеличения подачи воздуха
От количества попадающего воздуха зависит мощность двигателя. Установка турбины – метод радикальный, однако существуют более простые и дешевые способы:
Установка воздушного фильтра нулевого сопротивления
К данному способу относятся скептически, но эффективность ФНС доказана. Оправдана установка подобного фильтра только в случае комплексного тюнинга, но и без того прибавляет скромных 1-3% мощности за счет снижения сопротивления, а значит, увеличения объема воздуха в камере сгорания.
Холодный впуск
Существуют готовые комплекты холодного впуска. Не на всех автомобилях воздухозаборник способен забирать холодный воздух, температура подкапотного пространства не позволяет.
Конструкция холодного впуска дает возможность попадать в коллектор холодному воздуху, а значит в цилиндры попадает больше воздуха – горение смеси будет более эффективно.
Установка впускного коллектора с иной геометрией
Для автомобилей ВАЗ предусмотрены коллектора под разные потребности: с короткими каналами — мотор будет «верховым», с длинными каналами обеспечить достаточный крутящий момент с холостых до средних оборотов.
Резюме
Вышеуказанные операции по изменению количества впускаемого в систему воздуха, а также геометрии его движения, приводят к незначительному увеличению мощности. Для обеспечения стабильной работы впускной системы требуется ежегодная промывка дросселя и датчиков, а также сокращенный срок замены воздушного фильтра.
Подача воздуха в двигатель: устройство и схема работы
На карбюраторных моторах впускная система отсутствовала как таковая, хотя ее некоторые составные части использовались – воздухозаборник, фильтрующий воздушный элемент, коллектор. В их задачу входила подача воздуха в двигатель, а после прохождения воздушного потока через карбюратор – топливовоздушной смеси в цилиндры. С появлением инжекторов с электронным управлением, конструкция элементов, обеспечивающих наполнение воздухом камер сгорания, усложнилась, добавились новые, в результате образовалась полноценная система впуска.
Система продолжает выполнять все ту же задачу – наполнение цилиндров воздухом. Но за счет использования электронного управления, удается обеспечить заполнение цилиндров оптимальным количеством воздуха в любых режимах работы мотора. Это позволяет поддерживать требуемые пропорции топливовоздушной смеси для получения максимального выхода мощности при минимально возможном расходе топлива. Оптимальная пропорция для смеси является 14,7 частей воздуха на 1 часть топлива. Именно этот состав и старается поддерживать впускная система практически на любом режиме работы мотора.
Система подачи воздуха на бензиновых двигателях
Сразу отметим, что останавливаться на моторах, которые оборудованы устаревшей карбюраторной системой, мы не будем. Речь пойдет о ДВС с инжектором. В качестве примера давайте рассмотрим общее устройство системы подачи воздуха на модели авто с инжекторным двигателем.
Добавим, что хотя на разных моделях отечественного и иностранного производства схема реализации может несколько отличаться, общий принцип и конструкция остаются одинаковыми.
Система подачи воздуха состоит из следующих базовых элементов:
- воздухозаборник;
- воздушный фильтр в корпусе;
- впускной патрубок (патрубок впускной трубы);
- дроссельный патрубок;
- ресивер;
Воздухозаборник на разных автомобилях представляет собой пластиковую деталь, через которую атмосферный воздух «засасывается» в двигатель. Элемент обычно установлен в подкапотном пространстве так, чтобы забирать воздух по ходу движения авто, находится в области чуть ниже передних фар, ближе к радиаторной решетке, справа или слева. Такое место расположения позволяет эффективно забирать необходимое количество воздуха на разных режимах работы ДВС.
Исключением можно считать мощные внедорожники и специально подготовленные для офф-роадинга автомобили, у которых воздухозаборник обычно выносится отдельно и выводится наружу. Как правило, в этом случае предполагается, что автомобиль будет преодолевать глубокие водные преграды, а вынос воздухозаборника позволяет избежать гидроудара в результате попадания воды в цилиндры двигателя.
Следующим элементом является корпус воздушного фильтра и сам фильтр, который установлен внутри него. Обычно на большинстве автомобилей корпус с фильтром устанавливается в передней части моторного отсека, дополнительно под корпусом могут использоваться резиновые уплотнители-опоры. Что касается фильтра, фильтрующий элемент обычно является бумажным, площадь фильтрующей поверхности максимально увеличена.
В корпусе воздушного фильтра на многих авто также установлен важный электронный датчик ДМРВ (датчик массового расхода воздуха). Также этот датчик может располагаться и на других элементах системы до дроссельной заслонки.
Дроссельный патрубоккрепится к ресиверу и дозирует объем воздуха, который подается во впускную трубу. За количество поступающего в мотор воздуха отвечает дроссельная заслонка, которая при помощи специального привода соединена с педалью газа. Еще на многих современных ТС педаль газа может быть электронной, то есть не имеет прямой связи с дроссельным узлом. В этом случае после нажатия на акселератор соответствующий сигнал подается на электродвигатель, управляющий дроссельной заслонкой.
Еще добавим, что дроссельный патрубок также имеет в своей конструкции ДПДЗ (датчик положения дроссельной заслонки) и РХХ (регулятор холостого хода). Благодаря наличию ДПДЗ на электронный блок управления двигателем (ЭБУ) подается сигнал, по которому контроллер «понимает», на какой угол открыта заслонка. На основании сигналов от ДМРВ, ДПДЗ и ряда других датчиков ЭБУ корректирует уровень подачи топлива в цилиндры через инжекторные форсунки в соответствии с тем или иным режимом работы ДВС.
Что касается РХХ, данный регулятор устанавливается на корпусе дроссельного узла. Фактически указанный регулятор является шаговым двигателем, к которому присоединен конусный шток-клапан. Если просто, шток РХХ выдвигается или, наоборот, втягивается благодаря работе шагового электродвигателя. Управляющий сигнал на шаговый двигатель формирует ЭБУ.
Такое решение позволяет поддерживать и гибко изменять количество оборотов холостого хода тогда, когда дроссельная заслонка закрыта, то есть воздух идет в обход. Другими словами, РХХ управляет количеством воздуха, который подается по специальному каналу в обход закрытой дроссельной заслонки на холостом ходу.
Когда клапан-шток выдвигается полностью, его конусная часть перекрывает подачу воздуха мимо заслонки (клапан РХХ закрыт). Когда происходит его открытие, увеличивается количество воздуха, которое нарастает пропорционально степени смещения штока от седла. Общая степень перемещения штока напрямую зависит от количества шагов, которые выполнил шаговый электродвигатель.
Если двигатель холодный и работает на холостом ходу, тогда ЭБУ до прогрева «держит» завышенные (прогревочные) обороты ХХ и гибко реагирует на любые изменяющиеся нагрузки (включение габаритов, фар, климатической установки и т.д.) путем поднятия оборотов холостого хода. Это позволяет мотору стабильно работать.
После того, как двигатель прогреется, контроллер уменьшает количество подаваемого воздуха через РХХ и стремится всегда поддерживать строго определенную частоту вращения коленвала, однако на многих авто при изменении нагрузки в режиме ХХ блок управления все еще способен кратковременно повысить обороты.
Еще отметим, что когда водитель выключает зажигание, ЭБУ сначала переводит шток РХХ в закрытое положение, после чего приоткрывает клапан на нужное количество шагов, чтобы создать условия в виде достаточной подачи воздуха для нормального запуска агрегата в момент повторного пуска ДВС.
Система выпуска
Несмотря на простую конструкцию система выпуска выполняет не малое количество функций, основные из которых это: отвод выхлопных газов через выпускной коллектор, поглощение шумов и вибраций в результате работы мотора, продувка цилиндров, очистка ОГ от сажи и других вредных примесей. Выпускной система может состоять из следующих элементов:
- выпускной коллектор;
- лямбда-зонд;
- каталитический нейтрализатор;
- сажевый фильтр (на дизельных двигателях);
- глушители звука и соединительные трубы.
Лямбда-зонд. Диагностика и замена
К основным датчикам выпускной системы относится лямбда-зонд. По его сигналам ЭБУ постоянно корректирует время впрыска, добиваясь оптимального состава топливно-воздушной смеси для устойчивой работы двигателя и снижения расхода топлива.
Если ваш автомобиль стал потреблять больше топлива или произошла потеря тяги, появились перебои в движении, обороты двигателя нестабильны, катализатор стал работать нестабильно, то, скорее всего, имеется неисправность лямбда-зонда.
Как правило, самыми распространенными причинами неисправности лямбда-зонда являются:
- из-за применения некачественного топлива;
- перегрев корпуса лямбда-зонда;
Обычно, даже если нет явных неисправностей, один раз в 10000 км производят проверку лямбда-зонда. Проверку производят как визуально, так и с помощью таких приборов, как осциллограф или вольтметр. В ходе визуальной проверки осматривают:
- разъемы подключения проводов;
- проверяют надежность подключения и наличие сажевых отложений, возникающих в случае неисправного нагревателя или, если сгорает слишком обогащенная смесь;
- проверяют наличие блестящих отложений, которые являются признаком наличия свинцовых отложений и повреждают лямбда-зонд;
- проверяют наличие белых или серых отложений, возникающих из-за использования в топливе различных присадок и приводящих к замене датчика.
Проверку с помощью прибора производят на прогретом двигателе в том случае, если визуальная проверка не выявила неисправностей. При работающем двигателе отключаем от колодки датчик кислорода (лямбда-зонд) и подключаем его сигнальный провод к вольтметру, который должен быть включен в режим постоянного напряжения. Затем кратковременно доводят обороты двигателя до 2500, вынимают вакуумную трубку из регулятора давления и смотрят показания вольтметра.
Если показания прибора менее 0,8В, то лямбда-зонд неисправен. Если при проведении проверки лямбда-зонда на обедненную смесь показания прибора составили менее 0,2В, то датчик кислорода подлежит замене.
Лямбда-зонд меняют на аналогичный, при этом надо удостовериться, что маркировка старого и нового зондов полностью совпадает. Работа по замене зонда производятся только на холодном (непрогретом) двигателе и при отключенной системе зажигания. Сначала необходимо отсоединить от зонда провода, затем с помощью ключа откручиваем старый зонд и вкручиваем новый. При закручивании прилагать разумное усилие для того, чтобы не сорвать резьбовое соединение.
Удаление сажевого фильтра FAP/DPF
У автомобилей с дизельными двигателями уменьшение выброса вредных веществ происходит за счет применения системы «common rail» и сажевого фильтра. В последнее время фильтр такого типа объединяют с катализатором, вследствие чего один узел автомобиля осуществляет выполнение функций — фильтра FAP/DPF и катализатора. Назначение этого фильтра — препятствовать попаданию сажи в атмосферу, а катализатор осуществляет доокисление углеводородов.
Сам фильтр представляет собой керамические элементы, помещенные в металлический корпус. В нем множество впускных и выпускных каналов, а непосредственно фильтрующие стенки выполнены из пористого материала, который в свою очередь покрыт специальным веществом. Частицы сажи оседают на стенках, а через каналы беспрепятственно проходит газ. В процессе функционирования двигателя сажевые накопления в фильтре периодически высвобождаются путем регенерации, которая бывает, как активной, так и пассивной.
Пассивная регенерация сажевого фильтра происходит при длительной работе двигателя на повышенных оборотах, например, при движении за городом. Активная регенерация наоборот, запускается принудительно блоком управления двигателем. При этом температура выхлопа повышается за счет впрыска дополнительного количества топлива, которое сжигает накопившуюся сажу в фильтре. Проблема сажевого фильтра заявляет о себе появлением предупреждающей индикации на панели приборов, при этом падает мощность двигателя, ощутимо возрастает расход топлива, появляется нестабильная работа на холостых оборотах и повышенная задымленность выхлопа.
Диагностика и ремонт системы впуска/выпуска автомобиля в Минске популярна среди автомобилей audi (ауди), bmw (бмв), kia (киа), opel (опель), mercedes (мерседес), ford (форд), skoda (шкода), peugeot (пежо), volvo (вольво), toyota (тойота), volkswagen (фольксваген), mazda (мазда), nissan (ниссан).
Система подачи воздуха в дизельный двигатель
Как известно, современный дизельный двигатель на разных автомобилях и спецтехнике обычно оснащается турбокомпрессором. Также данное решение активно используется и на турбобензиновых ДВС.
Другими словами, для получения необходимой отдачи от моторов силовую установку дополнительно турбируют. Дизельный агрегат с турбонаддувом получил название турбодизель. Давайте остановимся на схеме подачи воздуха в такие моторы более подробно.
Как и в случае с бензиновыми ДВС, система питания дизельных моторов воздухом предполагает его забор из атмосферы, очистку поступающего воздуха и дальнейшую подачу в цилиндры. При этом воздух дополнительно проходит через турбину, охлаждается и уже затем поддается в камеру сгорания, причем нагнетается под давлением.
На примере турбодизеля стоит выделить следующие элементы системы питания воздухом:
- воздухозаборник;
- воздухоочиститель (воздушный фильтр);
- турбокомпрессор;
- специальный воздушный радиатор (интеркулер);
- впускной коллектор;
С функцией воздухозаборника и воздушного фильтра мы уже ознакомились при рассмотрении атмосферного бензинового мотора. Что касается турбодвигателей на спецтехнике, которая работает в условиях сильной запыленности и общего загрязнения воздуха, используется многоступенчатая система очистки (двух или даже трехступенчатые схемы). В конструкцию может быть включен инерционный предварительный очиститель воздуха и другие подобные решения.
Итак, после прохода через фильтры, воздух втягивается в турбокомпрессор. После турбины воздух идет по трубопроводам уже под давлением, проходя через так называемый воздушный радиатор. Дело в том, что после сжатия в турбине воздух нагревается. При этом если его охладить перед подачей в цилиндры, тогда общая масса воздуха увеличивается.
В результате такого снижения температуры в камеру сгорания удается подать больше воздуха, что позволяет более полноценно и эффективно сжечь топливо, добиться прироста мощности, улучшенной экономичности и снизить токсичность выхлопа.
Далее сжатый и охлажденный воздух попадает во впускной коллектор, а затем и в цилиндры дизельного двигателя. Что касается турбокомпрессора, данное устройство использует энергию отработавших газов. Если просто, газы под давлением вращают турбинное колесо, за счет такого вращения начинает крутиться и компрессорное колесо, которое закреплено на одном валу вместе с турбинным колесом. Затем выхлоп после турбины попадает в выпускную систему ТС и выводится в атмосферу.
Отметим, что существует много разновидностей турбин, которые отличаются по размерам, по своей производительности и могут иметь ряд индивидуальных отличий в общей схеме устройства. Еще добавим, что дизельный двигатель долгое время вообще не имел дроссельной заслонки по сравнению с бензиновыми аналогами. В двух словах, мощность в дизельном агрегате регулируется не количеством подаваемого в цилиндры воздуха, а количеством впрыскиваемого горючего.
Кстати, на современных дизельных ДВС дроссельная заслонка все же появилась, но она выполняет другие задачи. Если точнее, снижается токсичность выхлопа в соответствии с жесткими экологическими нормами.
Работает дроссельный узел тогда, когда нагрузки на двигатель минимальны, то есть мотор не нуждается в мощном потоке свежего воздуха. В этот момент заслонка частично перекрывает подачу воздуха, параллельно с этим срабатывает клапан системы рециркуляции отработавших газов EGR.
В результате оставшийся воздух перемешивается с выхлопными газами, после чего такая смесь снова поступает в цилиндры. Подача выхлопа вместе с воздухом снижает температуру в камере сгорания, в результате в отработавших газах отмечается уменьшение окиси азота.
Второй претендент – выпускной коллектор
Ему также отводится немаловажная роль по отводу сгоревших газов. После закрытия впускных клапанов начинается сжимание топлива с поджиганием свечой. Затем происходит мини хлопок, отправляя вниз поршни. Это в свою очередь открывает выпускные клапана, отводя сгоревшие вещества.
Газы должны выходить после клапанов в глушитель. Их сбором из цилиндров занимается выпускной коллектор. Широкая его часть подсоединена к головке блока. После прохождения по трубам, газы собираются в одном месте. Их дожигание осуществляется благодаря катализатору. Затем уже идет глушитель, потом только выход в атмосферу.
Хочется отметить, гашение происходит не только отработанных газов, но и выхлопного звука.
Особенностью функционирования выпускного коллектора является работа с высокими температурами. Кстати, выхлоп часто разогревается до 950 градусов. Ввиду этого используется тугоплавкий металл, выдерживающий высокие тепловые показатели. В отводящий коллектор обычно встраивают датчик. Который регулирует содержание кислорода, также других выхлопных газов.
Как увеличить подачу воздуха в двигатель: доступные способы
Как видно, от количества и качества поступающего в цилиндры воздуха напрямую будет зависеть и мощность силового агрегата. В целях получения улучшенной отдачи от ДВС многие автолюбители стремятся увеличить подачу воздуха в агрегат. Как правило, такая необходимость возникает в процессе тюнинга двигателя, после проведения каких-либо доработок и т.д.
Далее мы рассмотрим несколько возможных способов, которые при этом не предполагают кардинальных переделок (например, доработка каналов ГБЦ, замена турбины на более производительную и т.п.)
- Самым простым и бюджетным решением является установка фильтра нулевого сопротивления (нулевика). Хотя общий прирост мощности от такого решения небольшой, но на спортивных и специально подготовленных авто установка нулевика в комплексе с другими усовершенствованиями волне оправдана.
Однако этого не скажешь о гражданских авто со «стоковым» ДВС. В этом случае получается скорее вред, чем польза, так как фильтры нулевого сопротивления быстрее загрязняются и хуже очищают воздух, что может сказаться на ресурсе мотора. При этом никакого прироста мощности фактически не наблюдается.
- Еще одним способом подать в мотор больше воздуха является доработка элементов заводской системы. Речь идет о воздухозаборнике, патрубках, верхней крышке корпуса воздушного фильтра.
В самом начале необходимо измерить сопротивление воздуха на входе и после выхода из корпуса фильтра, после чего проводятся работы в целях уменьшения такого сопротивления.
- Также следует отметить, что иногда на профильных форумах встречается информация об электрическом вентиляторе во впуск (динамический вентилятор, завихритель воздуха, система динамического наддува, электрический турбонагнетатель и т.п.). В свое время на рынке выделялись производители Кamann, Simota и ряд других.
Если коротко, так называемая электротурбина на впуске позволяет добиться подачи охлажденного воздуха во впускной коллектор без каких-либо существенных доработок, что особенно актуально для атмомоторов. В результате в двигатель начинает поступать охлажденный, а не теплый воздух, увеличивается объем воздуха и т.д.
Устройство представляет собой патрубок, в котором устанавливается крыльчатка. Во время работы крыльчатка вращается, создавая спиралеподобные завихрения воздуха. По заверениям производителей такой воздух более холодный и лучше проникает в камеры сгорания.
В результате улучшается общий процесс смесеобразования, мощность двигателя растет, повышается эластичность во время работы ДВС на разных режимах, автомобиль демонстрирует улучшенные динамические характеристики.
Однако как показывает практика, особой пользы после установки таких решений нет. Более того, высокая стоимость на отметке около 300-400 у.е. и вовсе ставит целесообразность подобных экспериментов под большое сомнение.
- Еще в списке возможных решений для увеличения подачи воздуха можно отметить так называемый «холодный впуск». Подобное решение фактически предполагает вынос воздухозаборника из подкапотного пространства наружу, что позволяет снизить температуру поступающего воздуха и повысить его плотность.
Рекомендуем также прочитать статью о том, что такое турбокомпрессор. Из этой статьи вы узнаете о конструкции турбины, приципах работы турбонаддува, а также об особенностях данной системы, преимуществах и недостатках данного решения и т.д.
В продаже встречаются готовые комплекты как для определенных моделей авто, так и универсальные. К преимуществам холодного впуска можно отнести увеличение мощности двигателя, снижение риска возникновения детонации, улучшение реакций на нажатие педали газа, незначительное уменьшение расхода топлива.
При этом существенно повышается вероятность попадания воды во впуск и гидроудара, а также намного быстрее загрязняется воздушный фильтр. Дело в том, что воздухозаборник ставится в «окна», которые отдельно делаются в бампере, в передней фаре и т.д.
Электромагнитный клапан системы изменения длины впускного коллектора
Клапан состоит из корпуса, запорного механизма, трёх штуцеров и электромагнитной катушки. Чтобы демонтировать клапан с автомобиля достаточно со стороны ресивера отогнуть фиксатор-защёлку и сдвинуть клапан вниз
Клапан имеет три штуцера. Один из них (атмосферный) закрыт крышечкой. Её необходимо снять для проверки и удаления грязи
Для проверки запирающих свойств клапана достаточно подуть в боковой штуцер. При этом воздух должен выходить в нижний (атмосферный) штуцер, а в верхний не должен. Если подать на клапан напряжение, то всё должно быть наоборот.
Для проверки обмотки клапана достаточно нажать на фиксатор колодки проводов и снять её
На клапане будут видны два контакта. К ним необходимо подключить омметр и замерить сопротивление, которое должно составлять несколько Ом. Если сопротивление в норме, а клапан не работает, тогда необходимо проверить приходящее напряжение на колодке, которое должно составлять около 12 В. Не забудьте завести двигатель для измерения напряжения.
Ресивер (вакуумный бачок) системы изменения длины впускного коллектора
Это цилиндрическая ёмкость с обратным клапаном внутри. Проверка очень проста и состоит из двух пунктов:
- проверить целостность, чтобы не было утечки вакуума
- отключить трубку, идущую к электромагнитному клапану, а вторую трубку отключить от коллектора (трубка №2). Подуть в эту трубку — воздух не должен проходить. Но при всасывании в себя — воздух должен проходить!
Требования к составу топливо-воздушной смеси
Совместная работа дроссельной и впускных заслонок современного инжекторного двигателя с системой непосредственного впрыска обеспечивает несколько видов смесеобразования. Разный состав смеси необходим для функционирования двигателя в разных режимах.
Послойное смесеобразование нужно для работы двигателя на небольших оборотах. В этом случае, дроссельная заслонка находится в полностью открытом состоянии большую часть времени, а впускные — в закрытом.
Гомогенное (однородное) смесеобразование используется для высоких оборотов двигателя. При этом степень открытия дроссельной заслонки напрямую зависит от необходимого крутящего момента двигателя. Впускные же заслонки находятся в открытом положении.
Существует и такое смесеобразование (бедное гомогенное), при котором двигатель работает на средних оборотах. Открытие заслонки происходит при этом также в зависимости от крутящего момента, а впускные заслонки закрыты.