Способы возбуждения машин постоянного тока и их классификация
Ток, протекающий в обмотке возбуждения основных полюсов, создает магнитный поток . Электрические машины постоянного тока следует различать по способу возбуждения и схеме включения обмотки возбуждения.
Генераторы постоянного тока могут выполняться с независимым, параллельным, последовательным и смешанным возбуждением. Следует заметить, что теперь применение в качестве источников энергии генераторов постоянного тока очень ограничено.
Обмотка возбуждения генератора постоянного тока с независимым возбуждением получает питание от независимого источника — сети постоянного тока, специального возбудителя , преобразователя и др. (рис. 1, а). Эти генераторы применяются в мощных системах, когда напряжение возбуждения должно быть выбрано отличным от напряжения генератора, в системах регулирования скорости вращения двигателей, которые питаются от генераторов и других источников.
Значение тока возбуждения мощных генераторов составляет 1,0—1,5% от тока генераторов и до десятков процентов для машин мощностью порядка десятков ватт.
Рис. 1. Схемы генераторов постоянного тока: а — с независимым возбуждением; б — с параллельным возбуждением; в — с последовательным возбуждением; г — со смешанным возбуждением П — потребители
У г енератора с параллельным возбуждением обмотка возбуждения включается на напряжение самого генератора (смотрите рис. 1,б). Ток якоря I я равен сумме токов нагрузки I п и тока возбуждения I в: I я = I п + I в
Генераторы выполняются обычно для средних мощностей.
Обмотка возбуждения генератора с последовательным возбуждением включена последовательно в цепь якоря и обтекается током якоря (рис. 1, в). Процесс самовозбуждения генератора протекает очень бурно. Такие генераторы практически не используются. В самом начале развития энергетики применялась система передачи энергии с последовательно включенными генераторами и двигателями последовательного возбуждения.
Генератор со смешанным возбуждением имеет две обмотки возбуждения — параллельную ОВП и последовательную ОВС обычно с согласным включением (рис. 1, г). Параллельная обмотка может быть включена до последовательной («короткий шунт») или после нее («длинный шунт»). МДС последовательной обмотки обычно невелика и рассчитана только на компенсацию падения напряжения в якоре при нагрузке. Такие генераторы теперь также практически не применяются.
Схемы возбуждения двигателей постоянного тока подобны схемам для генераторов. Двигатели постоянного тока большой мощности выполняются обычно с независимым возбуждением . У двигателей параллельного возбуждения обмотка возбуждения получает питание от того же источника энергии, что и двигатель. Обмотка возбуждения включается непосредственно на напряжение источника энергии, чтобы не сказывалось влияние падения напряжения в пусковом сопротивлении (рис. 2).
Рис. 2. Схема двигателя постоянного тока с параллельным возбуждением
Ток сети Ic составляется из тока якоря I я и тока возбуждения I в.
Схема двигателя последовательного возбуждения подобна схеме на рис. 1, в. Благодаря последовательной обмотке вращающий момент при нагрузке возрастает больше, чем у двигателей параллельного возбуждения, при этом скорость вращения уменьшается. Это свойство двигателей определяет их широкое применение в приводах электровозной тяги: в магистральных электровозах, городском транспорте и др. Падение напряжения в обмотке возбуждения при номинальном токе составляет единицы процентов от номинального напряжения.
Двигатели смешанного возбуждения из-за наличия последовательной обмотки в некоторой мере имеют свойства двигателей последовательного возбуждения. В настоящее время они практически не применяются. Двигатели параллельного возбуждения иногда выполняются со стабилизирующей (последовательной) обмоткой, включаемой согласно с параллельной обмоткой возбуждения, для обеспечения более спокойной работы при пиках нагрузки. МДС такой стабилизирующей обмотки невелика — единицы процентов от основной МДС.
Способы возбуждения машин постоянного тока
Законспектировать лекцию, ответить на контрольные вопросы
Лекция
Тема: Принцип действия машины постоянного тока.
План лекции
Электрические машины постоянного тока
Принцип действия.
Применение.
Ключевые слова: принцип действия, устройство, применение, машина постоянного тока
Литература: Б.С. Гершунский «Электротехника с основами промышленной электроники п.9.7
Электрическими машинами называются устройства для преобразования механической энергии в электрическую и наоборот.
Два неподвижных полюса N и S создают магнитный поток. В пространстве между полюсами помещается стальной сердечник в виде цилиндра (рис. 1).
Рис. 1 К принципу действия машины постоянного тока
На наружной поверхности цилиндра помещен виток медной проволоки abcd, изолированный от сердечника. Концы его присоединены к двум кольцам, на которые наложены щетки 1 и 2. К щеткам подключена нагрузка zн.
Если вращать сердечник с частотой n в указанном на рисунке направлении, то виток abcd, вращаясь, будет пересекать магнитные силовые линии, на концах его будет наводиться ЭДС. И если к витку подключена нагрузка zн, то потечет и ток. Направление тока определится правилом «правой руки». Из рисунка видно, что направление тока будет от точек b к а и от d к с. Соответственно во внешней цепи ток течет от щетки 1 к щетке 2. Щетку 1, от которой отводится ток во внешнюю цепь, обозначим (+), а щетку 2, через которую ток возвращается в машину обозначим (-). При повороте витка на 180° проводники аb и cd меняются местами, изменяется знак потенциала на щетках 1 и 2 и изменится на обратное направление ток во внешней цепи.
Таким образом, во внешней цепи течет переменный синусоидальный ток (рис. 2).
Рис. 2 График изменения тока
Чтобы выпрямить переменный ток, необходимо в машине применить коллектор (рис. 3).
Рис. 3 Схема выпрямления тока
В простейшем случае это два полукольца и к ним припаиваются концы витков abcd. Полукольца изолирования друг от друга и от вала. При вращении в витке abcd в нем по-прежнему возникает переменная ЭДС, но под каждой щеткой будет ЭДС только одного знака: верхняя щетка будет иметь всегда (+), а нижняя — всегда (-).
Кривая тока во внешней цепи будет иметь другую форму (рис. 4).
Рис. 4 График выпрямленного тока двумя полукольцами
Из графика видно, что нижняя полуволна заменена верхней. Если применить не один виток, а два и присоединить их концы к коллекторным пластинам, которых теперь 4, то кривая выпрямленного тока будет иной.
При наличии нескольких витков кривая выпрямленного напряжения будет более сглаженной (рис. 5).
Рис. 5 График выпрямления тока коллектором
Машина постоянного тока конструктивно состоит из неподвижной части — статора и вращающейся — ротора. Статор имеет станину, на внутренней поверхности которой крепятся магнитные полюсы с обмотками (рис. .6).
Рис. 6 Статор машины постоянного тока
Ротор машины чаще называется якорем. Он состоит из вала, цилиндрического сердечника, обмотки и коллектора (рис. 7).
Магнитные полюсы и сердечник якоря набираются из отдельных листов электротехнической стали. Листы покрываются изолированной бумагой или лаком для уменьшения потерь на гистерезис и вихревые токи. Коллектор набирают из медных пластин, имеющих сложную форму (рис. 8). Пластины друг от друга изолированы специальной теплостойкой прокладкой. Такая же изоляция имеется между коллектором и валом двигателя. Набор коллекторных пластин образует, цилиндр-коллектор.
Рис. 8 Коллектор машины постоянного тока
К внешней поверхности коллектора прилегают токосъемные щетки, которые выполнены из спрессованного медного и угольного порошка.
Щетка помещается в металлическую обойму и прижимается к коллектору пружинами (рис. 9).
Рис. 9 Щёточное устройство
Способы возбуждения машин постоянного тока
Возбуждение — это понятие, связанное с созданием основного магнитного поля машины. В машинах с электромагнитным возбуждением основное поле создается обмотками возбуждения. Имеются конструкции, в которых возбуждение создается постоянными магнитами, размещенными на статоре.
Различают четыре схемы включения статорных обмоток: с независимым, параллельным, последовательным и смешанным возбуждением (рис. 21.10).
Рис .10 Схемы возбуждения машин постоянного тока
Изображения под пунктами б, в, г на рис. 7.2.1, называются схемами с самовозбуждением. Процесс самовозбуждения происходит за счет остаточной намагниченности полюсов и станины. При вращении якоря в этом, небольшом по величине, магнитном поле (ФОСТ = 0,02 0,03 ФО) индуцируется ЭДС — ЕОСТ.Поскольку обмотка возбуждения подключена через щетки к якорю, то в ней будет протекать ток. Этот ток усилит магнитное поде полюсов и приведет к увеличению ЭДС якоря. Большая ЭДС вновь увеличит ток возбуждения и произойдет нарастание магнитного потока до полного намагничивания машины.
Обмотки якоря машины постоянного тока.
Для работы машины постоянного тока необходимо наличие двух обмоток; обмотки возбуждения и обмотки якоря. Первая, как известно, служит для создания в машине основного магнитного потока, а во второй происходит преобразование энергии.
Обмотка якоря является замкнутой системой проводников, уложенных в пазах.
Элементом якорной обмотки является секция, которая может быть одно — или много витковой. Секция состоит из активных сторон и лобовых частей. При вращении якоря, в каждой из активных сторон индуцируется ЭДС, величина которой равна:
т.е. она зависит от магнитной индукции полюсов ВСР, длины проводника L и скорости его движения V. В реальной машине, будь она генератором или двигателем, в наведении ЭДС участвуют все проводники обмотки якоря.
Величина суммарной ЭДС:
где n — скорость вращения якоря (ротора), об/мин;
Ф — магнитный поток полюсов;
Се — постоянный коэффициент, зависящий от количества витков в секции.
Обмотка якоря может быть петлевой и волновой. Петлевая обмотка, если ее изобразить в развернутом виде, имеет следующий вид (рис. 11):
Рис.11 Петлевая обмотка якоря
Расстояние между активными сторонами одной секции называется первым шагом обмотки — y1. Расстояние между началом второй секции и концом первой называется вторым шагом обмотки — у2. Расстояние между, началами секций, следующих друг за другом, называется результирующим шагом — у. Шаги обмотки определяются числом пазов.
Расстояние между коллекторными пластинами, куда припаиваются начало и конец, принадлежащие одной секции, называется шагом по коллектору — ук. В петлевой обмотке ук= 1. Шаг ук определяется числом коллекторных пластин.
Развернутая волновая обмотка имеет вид: (рис. 21.12).
Рис. 12 Волновая обмотка якоря
Форма волновой обмотки отлична от петлевой и, следовательно, будет иное соединение секций.
Однако шаги волновой обмотки имеют общее с петлевой определение.
Шаг по коллектору здесь значительно больше единицы (ук >> 1).
1. Что представляет собой машина постоянного тока?
2. Опишите устройство и принцип действия машины постоянного тока?
Способы возбуждения машин постоянного тока
Работа и свойства электрических машин постоянного тока (как генераторов, так и двигателей) в значительной степени зависят от способа возбуждения в них магнитного потока. Действительно, магнитный поток входит множителем как в выражение ЭДС, так и в выражение электромагнитного момента, поэтому необходимо знать, как создается магнитный поток, от каких величин он зависит, как и для какой цели нужно изменять его значение.
Согласно ГОСТов, по способу возбуждения машины постоянного тока классифицируют следующим образом:
а) машины независимого возбуждения, обмотка возбуждения которых питается от постороннего источника электрического тока;
б) машины параллельного возбуждения, обмотка возбуждения которых соединена параллельно с цепью якоря;
в) машины последовательного возбуждения, обмотка возбуждения которых соединена последовательно с цепью якоря;
г) машины смешанного возбуждения, у которых имеются две обмотки возбуждения, одна из которых соединена последовательно с цепью якоря (другая — может быть либо независимой, либо, чаще, параллельной). Если МДС обмоток возбуждения имеют одно направление, то такое их включение называется согласным. Если же МДС обмоток направлены в разные стороны, то включение называется встречным.
Схемы всех четырех типов машин показаны соответственно на рис. 1.
Все эти электрические машины имеют одинаковое устройство и отличаются лишь выполнением обмотки возбуждения (ОВ). Обмотки независимого и параллельного возбуждения изготавливают с большим числом витков, из провода малого сечения, а обмотку последовательного возбуждения — с малым числом витков из провода большого сечения.
Существуют также машины небольшой мощности, магнитное поле у которых создается либо только постоянными магнитами, либо еще и обмотками возбуждения, питаемыми электрическим током. Свойства первых близки к свойствам машин независимого, а вторых — смешанного или независимого возбуждения (в зависимости от способа подключения обмотки возбуждения).
Рис. 1. Схемы электрических машин постоянного тока независимого (а), параллельного (6), последовательного (в) и смешанного (г)
возбуждений
Во всех машинах на возбуждение расходуется от 0,5 % до 5 % номинальной мощности машины, причем первое значение относится к очень мощным машинам, а второе — к машинам мощностью около 1 кВт.
Как видно из рис. 1, значение тока возбуждения /в машины независимого возбуждения не зависит от тока якоря и определяется напряжением источника питания, причем для регулирования тока /в последовательно в цепь обмотки возбуждения включают резистор.
У машины параллельного возбуждения, согласно закону Ома,
/в = Ur/(RB + Rр), (1)
где RB — сопротивление обмотки возбуждения, a Rp — последовательно с нею включаемого регулировочного резистора.
У машин последовательного возбуждения /в = /я.
Согласно ГОСТ 2582—81, выводы всех обмоток маркируются следующим образом:
Я1 и Я2 — начало и конец обмотки якоря;
С1 и С2 — начало и конец последовательной (сериесной) обмотки возбуждения;
Ш1 и Ш2 — начало и конец параллельной (шунтовой) обмотки возбуждения;
К1 и К2 — начало и конец компенсационной обмотки;
Н1 и Н2 — начало и конец обмотки независимого возбуждения;
Д1 и Д2 — начало и конец обмотки добавочных полюсов.
Возможны случаи, когда машина имеет несколько обмоток одного наименования. В этом случае их начала и концы после буквенных обозначений должны иметь две цифры:
первая указывает порядковый номер обмотки, a вторая,, — начало (1) или конец (2). Например, начало второй параллельной обмотки возбуждения будет иметь обозначение Ш21.