Устройство бензинового двигателя с прямым впрыском

Система непосредственного впрыска топлива

Сейчас одной из основных задач перед конструкторскими бюро автопроизводителей является создание силовых установок, потребляющими как можно меньше топлива и выбрасывающих в атмосферу сниженное количество вредных веществ. При этом всего этого необходимо добиться с условием того, что влияние на рабочие параметры (мощность, крутящий момент) будет минимальным. То есть, необходимо сделать мотор экономичным, и в то же время мощным и тяговитым.

Для достижения результата переделкам и доработкам подвергаются практически все узлы и системы силового агрегата. Особенно это касается системы питания, ведь именно она отвечает за поступление топлива в цилиндры. Последней разработкой в данном направлении считается непосредственный впрыск топлива в камеры сгорания силовой установки, функционирующего на бензине.

Суть этой системы сводится к раздельной подаче компонентов горючей смеси – бензина и воздуха в цилиндры. То есть принцип ее функционирования очень похож на работу дизельных установок, где смесеобразование выполняется в камерах сгорания. Но у бензинового агрегата, на котором установлена система непосредственного впрыска, имеется ряд особенностей процесса закачки составляющих топливной смеси, его смешивания и сгорания.

Немного истории

Прямой впрыск – идея не новая, в истории имеется ряд примеров, где такая система использовалась. Первое массовое использование такого типа питания мотора было в авиации в средине прошлого века. Использовать ее пытались и на автотранспорте, однако широкого распространения она не получила. Систему тех годов можно рассматривать как некий прототип, поскольку она была полностью механической.

«Вторую жизнь» система непосредственного впрыска получила в средине 90-х годов 20 века. Первыми свои авто с установками, имеющими прямой впрыск, оснастили японцы. Разработанный в Mitsubishi агрегат получил обозначение GDI, которое является аббревиатурой «Gasoline Direct Injection», что обозначается как непосредственный впрыск топлива. Чуть позже Toyota создала свой мотор – D4.

Прямой впрыск топлива

Со временем моторы, в которых используется прямой впрыск, появились и у других производителей:

  • Концерн VAG – TSI, FSI, TFSI;
  • Mercedes-Benz – CGI;
  • Ford – EcoBoost;
  • GM – EcoTech;

Непосредственный впрыск не является отдельным, совершенно новым типом, и относится он к инжекторным системам подачи топлива. Но в отличие от предшественников, топливо у него впрыскивается под давлением сразу в цилиндры, а не как раньше – во впускной коллектор, где бензин перемешивался с воздухом перед подачей в камеры сгорания.

Конструктивные особенности и принцип работы

Прямой впрыск бензина по принципу очень схож с дизелем. В конструкции такой системы питания имеется дополнительный насос, после которого бензин уже под давлением поступает на форсунки, установленные в ГБЦ с распылителями, находящимися в камере сгорания. В требуемый момент форсунка подает топливо в цилиндр, куда через впускной коллектор уже закачан воздух.

Конструкция данной системы питания включает:

  • бак с установленным в нем топливоподкачивающим насосом;
  • магистрали низкого давления;
  • фильтрующие элементы очистки топлива;
  • насос, создающий повышенное давление с установленным регулятором (ТНВД);
  • магистрали высокого давления;
  • рампа с форсунками;
  • перепускной и предохранительный клапаны.

Схема топливной системы с непосредственный впрыском

Назначение части элементов, такие как бак с насосом и фильтра описаны в других статьях. Поэтому рассмотрим назначение ряда узлов, использующихся только в системе прямого впрыска.

Одним из основных элементов в данной системе является насос высокого давления. Он обеспечивает поступление топлива под значительным давлением в топливную рампу. Конструкция его у разных производителей отличается — одно или многоплунжерная. Привод же осуществляется от распределительных валов.

Также в систему включены клапана, которые предотвращают превышение давления топлива в системе выше критических значений. В целом же регулировка давления выполняется в нескольких местах – на выходе из насоса высокого давления регулятором, который входит в конструкцию ТНВД. Имеется перепускной клапан, контролирующий давление на входе в насос. Предохранительный же клапан следит за давлением в рампе.

Читайте также:  Ремонт задних фонарей автомобиля ваз 2115

Работает все так: топливоподкачивающий насос из бака по магистрали низкого давления подает бензин на ТНВД, при этом бензин проходит через фильтр тонкой очистки топлива, где удаляются крупные примеси.

Плунжерные пары насоса создают давление топлива, которое при разных режимах работы двигателя варьируется от 3 до 11 МПа. Уже под давлением топливо по магистралям высокого давления поступает в рампу, которая распределяется по его форсункам.

Работа форсунок контролируется электронным блоком управления. При этом он основывается на показаниях множества датчиков двигателя, после анализа данных, он производит управление форсунками – момента впрыска, количества топлива и способа распыла.

Если на ТНВД подается количество топлива больше необходимого, то срабатывает перепускной клапан, который часть топлива возвращает в бак. Также часть топлива сбрасывается в бак в случае превышения давления в рампе, но делается это уже предохранительным клапаном.

Типы смесеобразования

Используя непосредственный впрыск топлива, инженерам удалось снизить расход бензина. И все достигнуто возможностью использования нескольких типов смесеобразования. То есть под определенные условия работы силовой установки подается свой тип смеси. Причем система контролирует и управляет не только подачей топлива, для обеспечения того или иного типа смесеобразования устанавливается еще и определенный режим подачи воздуха в цилиндры.

Всего же прямой впрыск способен обеспечить два основных типа смеси в цилиндрах:

  • Послойная;
  • Стехиометрическая гомогенная;

Это позволяет подобрать смесь, которая при определенной работе мотора, обеспечит наибольшее КПД.

Послойное смесеобразование позволяет двигателю функционировать на очень бедной смеси, в которой массовая часть воздуха больше топливной части в более чем 40 раз. То есть в цилиндры подается очень большое количество воздуха, а затем в нее добавляется немного топлива.

В нормальных условиях такая смесь от искры не загорается. Чтобы воспламенение произошло, конструкторы придали днищу поршня особую форму, обеспечивающую завихрение.

При таком смесеобразовании в камеру сгорания воздух, направленный заслонкой, поступает на большой скорости. В конце такта сжатия форсунка впрыскивает топливо, которое достигая днища поршня, за счет завихрения поднимается вверх к свече зажигания. В результате в зоне электродов смесь является обогащенной и легковоспламенимой, в то время как вокруг этой смеси находится воздух практически без частиц топлива. Поэтому такое смесеобразование и получило название послойного – внутри имеется слой с обогащенной смесью, поверх которого находится еще один слой, практически без топлива.

Данное смесеобразование обеспечивает минимальное потребление бензина, но и приготавливает такую смесь система лишь при равномерном движении, без резких ускорений.

Стехиометрическое смесеобразование – это изготовление топливной смеси в оптимальных пропорциях (14,7 части воздуха на 1 часть бензина), что обеспечивает максимальный выход мощности. Такая смесь уже воспламеняется легко, поэтому надобности в создании обогащенного слоя возле свечи не требуется, наоборот, для эффективного сгорания необходимо, чтобы бензин равномерно распределился в воздухе.

Поэтому топливо впрыскивается форсунками на также сжатия, и до воспламенения оно успевает хорошо перемещаться с воздухом.

Такое смесеобразование обеспечивается в цилиндрах во время ускорений, когда необходим максимальный выход мощности, а не экономичность.

Конструкторам пришлось также решать вопрос с переходом двигателя с бедной смеси на обогащенную во время резких ускорений. Чтобы не произошло детонационного сгорания, во время перехода используется двойной впрыск.

Первая закачка топлива выполняется на такте впуска, при этом топливо выступает в качестве охладителя стенок камеры сгорания, что исключает детонацию. Вторая порция бензина подается уже на конце такта сжатия.

Система непосредственного впрыска топлива благодаря применению сразу нескольких типов смесеобразования, позволяет неплохо экономить топливо без особого влияния на мощностные показатели.

Читайте также:  Чип тюнинг ниссан пресаж

Во время ускорений двигатель работает на обычной смеси, а после набора скорости, когда режим движения размеренный и без резких перепадов, силовая установка переходит на очень обедненную смесь, тем самым экономя топливо.

В этом и кроется основное достоинство такой системы питания. Но есть у нее и немаловажный недостаток. В топливном насосе высокого давления, а также в форсунках используются прецизионные пары с высокой степенью обработки. Именно они и являются слабым местом, поскольку эти пары очень чувствительны к качеству бензина. Наличие сторонних примесей, серы и воды способно вывести ТНВД и форсунки из строя. Дополнительно, бензин обладает очень слабыми смазывающими свойствами. Поэтому износ прецизионных пар выше, чем у того же дизельного мотора.

К тому же сама система непосредственной подачи топлива конструктивно более сложная и дорогостоящая, чем та же система раздельного впрыска.

Новые разработки

Конструкторы же на достигнутом не останавливаются. Своеобразную доработку прямого впрыска сделали в концерне VAG в силовом агрегате TFSI. У него систему питания объединили с турбокомпрессором.

Интересное решение предложила компания Orbital. Они разработали особую форсунку, которая помимо топлива впрыскивает в цилиндры еще и сжатый воздух, подающийся от дополнительного компрессора. Такая топливовоздушная смесь обладает отличной воспламеняемостью и хорошо сгорает. Но это пока только разработка и найдет ли она применение на авто, пока неизвестно.

В целом же, непосредственный впрыск сейчас является самой лучшей системой питания в плане экономичности и экологичности, хоть и имеются у нее свои недостатки.

Система непосредственного впрыска топлива в бензиновых двигателях: принцип работы

Система непосредственного впрыска топлива в бензиновых двигателях на сегодняшний день представляет собой наиболее совершенное и современное решение. Главной особенностью непосредственного впрыска можно считать то, что горючее подается в цилиндры напрямую.

По этой причине данную систему также часто называют прямым впрыском топлива. В этой статье мы рассмотрим, как работает двигатель с непосредственным впрыском топлива, а также какие преимущества и недостатки имеет такая схема.

Прямой впрыск топлива: устройство системы непосредственного впрыска

Как уже было сказано выше, горючее в подобных системах питания подается непосредственно в камеру сгорания двигателя. Это значит, что форсунки распыляют бензин не во впускном коллекторе, после чего топливно-воздушная смесь поступает через впускной клапан в цилиндр, а впрыскивают топливо в камеру сгорания напрямую.

Например, концерн VAG представил ряд моделей Audi и Volkswagen с атмосферными и турбированными бензиновыми двигателям TFSI, FSI и TSI, которые получили непосредственный впрыск топлива. Также двигатели с прямым впрыском производит компания BMW, Ford, GM, Mercedes и многие другие.

Такое широкое распространение непосредственный впрыск топлива получил благодаря высокой экономичности системы (около 10-15% по сравнению с распределенным впрыском), а также более полноценному сгоранию рабочей смеси в цилиндрах и снижению уровня токсичности отработавших газов.

Система непосредственного впрыска: конструктивные особенности

Итак, давайте в качестве примера возьмем двигатель FSI с его так называемым «послойным» впрыском. Система включает в себя следующие элементы:

  • контур высокого давления;
  • бензиновый ТНВД;
  • регулятор давления;
  • топливную рампу;
  • датчик высокого давления;
  • инжекторные форсунки;

Начнем с топливного насоса. Указанный насос создает высокое давление, под которым топливо подается к топливной рампе, а также на форсунки. Насос имеет плунжеры (плунжеров может быть как несколько, так и один в насосах роторного типа) и приводится в действие от распредвала впускных клапанов.

Кстати, в схеме используется специальный клапан-предохранитель, который стоит в рейке. Указанный клапан нужен для того, чтобы избежать слишком высокого давления топлива и тем самым защитить отдельные элементы системы. Рост давления может возникать по причине того, что горючее имеет свойство расширяться при нагреве.

Датчик высокого давления является устройством, которое измеряет давление в топливной рейке. Сигналы от датчика передаются на ЭБУ (электронный блок управления двигателем), который, в свою очередь, способен изменять давление в топливной рейке.

Читайте также:  Диагностика автомобиля с карбюратором

Если же говорить о системе прямого впрыска, вместе с датчиком высокого давления топлива для ее работы задействованы: датчик коленчатого вала, ДПРВ, датчик положения дроссельной заслонки, воздухорасходомер, датчик температуры воздуха во впускном коллекторе, датчик температуры ОЖ и т.д.

Благодаря работе этих датчиков на ЭБУ поступает нужная информация, после чего блок посылает сигналы на исполнительные устройства. Это позволяет добиться слаженной и точной работы электромагнитных клапанов, форсунок, предохранительного клапана и ряда других элементов.

Как работает система непосредственного впрыска топлива

Главным плюсом непосредственного впрыска является возможность добиться различных типов смесеобразования. Другим словами, такая система питания способна гибко изменять состав рабочей топливно-воздушной смеси с учетом режима работы двигателя, его температуры, нагрузки на ДВС и т.д.

  • Послойное смесеобразование задействуется тогда, когда нагрузки на двигатель низкие или средние, а обороты коленвала небольшие. Если просто, в таких режимах смесь несколько обедняется в целях экономии. Стехиометрическое смесеобразование предполагает приготовление такой смеси, которая легко воспламеняется, при этом не является слишком обогащенной.
  • Гомогенное смесеобразование позволяет получить так называемую «мощностную» смесь, которая нужна при больших нагрузках на двигатель. На обедненной гомогенной смеси в целях дополнительной экономии силовой агрегат работает на переходных режимах.
  • Когда задействован режим послойного смесеобразования, дроссельная заслонка широко открыта, при этом впускные заслонки находятся в закрытом состоянии. В камеру сгорания воздух подается с высокой скоростью, возникают завихрения воздушных потоков. Горючее впрыскивается ближе к концу такта сжатия, впрыск производится в область расположения свечи зажигания.

За короткое время до того, как на свече появится искра, образуется топливно-воздушная смесь, в которой коэффициент избыточного воздуха составляет 1.5-3. Далее смесь воспламеняется от искры, при этом вокруг зоны воспламенения сохраняется достаточно количество воздуха. Указанный воздух выполняет функцию температурного «изолятора».

В этом случае горючее впрыскивается еще на такте впуска, в результате чего удается получить однородную смесь. Избыток воздуха имеет коэффициент, близкий к единице. Такая смесь легко воспламеняется и полноценно сгорает по всему объему камеры сгорания.

Обедненная гомогенная смесь создается тогда, когда дроссельная заслонка полностью открыта, а впускные заслонки закрыты. В этом случае воздух активно движется в цилиндре, а впрыск горючего приходится на такт впуска. ЭСУД поддерживает избыток воздуха на отметке 1.5.

Дополнительно к чистому воздуху могут быть добавлены отработавшие газы. Это происходит благодаря работе системы рециркуляции отработавших газов EGR. В результате выхлоп повторно «догорает» в цилиндрах без ущерба для мотора. При этом снижается уровень выброса вредных веществ в атмосферу.

Что в итоге

Как видно, прямой впрыск позволяет добиться не только экономии топлива, но и хорошей отдачи от двигателя как в режимах низких и средних, так и высоких нагрузок. Другими словами, наличие непосредственного впрыска означает, что оптимальный состав смеси будет поддерживаться на всех режимах работы ДВС.

Что касается недостатков, к минусам прямого впрыска можно отнести разве что повышенную сложность во время ремонта и цену запчастей, а также высокую чувствительность системы к качеству горючего и состоянию фильтров топлива и воздуха.

Устройство и схема работы инжектора. Плюсы и минусы инжектора по сравнению с карбюратором. Часты неисправности инжекторных систем питания. Полезные советы.

Тюнинг топливной системы атмосферного и турбо двигателя. Производительность и энергопотребление бензонасоса, выбор топливных форсунок, регуляторы давления.

Установка карбюратора вместо инжектора, особенности процесса замены системы впрыска. Замена карбюратора на инжекторный электронный впрыск. Рекомендации.

Что такое моноинжектор: главные отличия и особенности одноточечной системы впрыска топлива. Как проверить и самостоятельно настроить моновпрыск .

Устройство и схема работы системы питания дизельного двигателя. Особенности топлива и его подачи , основные компоненты системы питания, турбодизельный ДВС.

Конструкция дизельного топливного насоса высокого давления, потенциальные неисправности, схема и принцип работы на примере устройства системы топливоподачи.

Оцените статью