- Бензиновый двигатель: устройство,принцип работы,виды ,фото,видео.
- Виды бензиновых двигателей
- Устройство бензо двигателя
- КЛАССИФИКАЦИЯ БЕНЗИНОВЫХ ДВИГАТЕЛЕЙ
- ПРИНЦИП РАБОТЫ ЧЕТЫРЕХТАКТНОГО ДВИГАТЕЛЯ
- ПРИНЦИП РАБОТЫ ДВУХТАКТНОГО ДВИГАТЕЛЯ
- Преимущества и недостатки бензинового и дизельного двигателя
- Карбюраторные и инжекторные двигатели.
- Принцип работы двигателя внутреннего сгорания
- Двигатель внутреннего сгорания — устройство, преобразующее энергию в рабочей полости. Изучение принципа работы ДВС. Процессы, происходящие в течение одного периода. Рабочий процесс двухтактного двигателя, источник энергии для автомобиля различного типа.
- Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
- Подобные документы
Бензиновый двигатель: устройство,принцип работы,виды ,фото,видео.
Бензиновый двигатель – особый вид поршневого ДВС (двигателя внутреннего сгорания), в котором воспламенение ТС (смеси топлива и воздуха) в цилиндрах осуществляется принудительно при помощи электрической искры, а в качестве топлива используется бензин.
Виды бензиновых двигателей
Современные бензиновые двигатели можно классифицировать по нескольким категориям.
- По количеству цилиндров – с одним цилиндром, двумя цилиндрами и несколькими цилиндрами.
- По расположению цилиндров:
- рядные двигатели (цилиндры расположены строго в ряд наклонным или вертикальным способом);
- V-образные двигатели (цилиндры расположены под углом);
- W-образные двигатели (цилиндры располагаются в четыре ряда под углом с коленвалом)
- оппозитные двигатели (цилиндры расположены под углом 180 градусов)
- По способу получения топливной смеси – инжекторные, карбюраторные.
- По типу смазки — раздельные (масло находится только в картере), смешанные (масло смешивается с топливом).
- По методу охлаждения — охлаждение жидкостью, охлаждение воздухом.
- По типу циклов – двухтактные, четырехтактные.
- По типу подачи воздушной смеси в цилиндры — с наддувом, без наддува.
Устройство бензо двигателя
Бензиновый двигатель относится к классу двигателей внутреннего сгорания, в которых предварительно сжатая топливовоздушная смесь в цилиндрах поджигается при помощи искры. Управление мощностью в такого рода двигателях происходит посредством регулирования потока воздуха, попадающего в них, с помощью дроссельной заслонки.
Дроссельная заслонка (дроссель, дроссельный клапан) – это устройство, проходное сечение которого значительно меньше сечения подводящего трубопровода. Это устройство служит для регулирования количества подаваемого в камеру сгорания двигателя топливо-воздушной смеси.
Карбюраторная дроссельная заслонка является одним из видов дросселя: ее задача заключается в регулировании поступления горючей смеси в цилиндр двигателя (рис. 13).
Здесь рабочим органом является пластина, закрепленная на вращающейся оси, которая помещена в трубу, в которой протекает регулируемая среда. Этот механизм в просторечии принято именовать «газом».
Управление дросселем в автомобиле происходит с места водителя, при этом обычно предусматриваются два возможных способа привода: от руки рычажком или кнопкой (такой способ используется, например, в автомобилях для инвалидов) либо (что более распространено) с помощью педали, нажимаемой ногой водителя.
Рисунок 13. Дроссельная заслонка
КЛАССИФИКАЦИЯ БЕНЗИНОВЫХ ДВИГАТЕЛЕЙ
Существует определенная классификация бензиновых двигателей по различным параметрам.
✓ По способу смесеобразования. Существуют двигатели с внешним смесеобразованием, в которых данный процесс происходит вне цилиндра, и двигатели с внутренним смесеобразованием, в которых процесс происходит соответственно внутри цилиндра – это двигатели с непосредственным впрыском.
✓ По способу осуществления рабочего цикла выделяют двигатели четырехтактные и двухтактные. И у тех, и у других существуют свои преимущества и недостатки. Так, например, двухтактные двигатели обладают большей мощностью на единицу объема по сравнению с четырехтактными, однако коэффициент полезного действия (КПД) у них ниже. Двухтактные двигатели используются в основном там, где на первом месте стоит проблема малого размера двигателя, а не эффективность и высокая мощность – в мотоциклах, небольших автомобилях и т. д. Четырехтактные двигатели более распространены и используются в абсолютном большинстве транспортных средств.
✓ По числу цилиндров бывают одноцилиндровые, двухцилиндровые и многоцилиндровые двигатели.
✓ По расположению цилиндров выделяют двигатели с вертикальным или наклонным расположением цилиндров в один ряд (так называемые «рядные» двигатели); V-образные с расположением цилиндров под углом (если они расположены под углом 180°, то это двигатель с противолежащими цилиндрами – оппозитный двигатель).
✓ По типу охлаждения существуют двигатели воздушного (в основном устаревшие модели) и жидкостного охлаждения.
✓ По типу смазки существуют раздельный (когда масло находится в картере) и смешанный (когда масло смешивается с топливом) типы.
✓ По способу приготовления рабочей смеси. По этому параметру выделяются карбюраторные и инжекторные двигатели.
В настоящее время последние постепенно вытесняют первые.
ПРИНЦИП РАБОТЫ ЧЕТЫРЕХТАКТНОГО ДВИГАТЕЛЯ
Как уже следует из самого названия, рабочий цикл четырехтактного двигателя основывается на четырех этапах – тактах.
Первым из этих этапов является впуск. Он характеризуется тем, что в течение этого такта происходит опускание поршня из верхней мертвой точки (ВМТ) в нижнюю мертвую точку (НМТ).
Впуск происходит за счет того, что кулачки распределительного вала открывают впускной клапан, через который в цилиндр засасывается свежая порция воздушно-топливной смеси (рис. 14).
Рисунок 14. Принцип работы четырехтактного двигателя
Вторым тактом является сжатие. На этом этапе поршень, наоборот, проходит путь из НМТ в ВМТ; при этом рабочая смесь, полученная на первом этапе, сжимается. В этот момент происходит резкое повышение температуры рабочей жидкости. Главнейшим параметром на данном этапе является степень сжатия. Важность его определяется тем, что, чем выше степень сжатия, тем выше экономичность двигателя. Стоит однако подчеркнуть, что для двигателя с большой степенью сжатия требуется топливо с большим октановым числом, а оно всегда стоит дороже.
На третьем этапе во время рабочего хода поршня происходит сгорание топлива и расширение рабочей смеси.
Под степенью сжатия понимается отношение рабочего объема двигателя в НМТ к объему камеры сгорания в ВМТ.
С помощью искры от свечи зажигания поджигается топливовоздушная смесь, причем это происходит незадолго до конца цикла сжатия. В процессе прохождения поршня из ВМТ в НМТ топливо сгорает. Под воздействием тепла, выработанного при сгорании топлива, рабочая смесь расширяется и толкает поршень. Здесь одним из важнейших параметров является угол опережения зажигания, под которым понимается степень недоворота коленчатого вала до ВМТ в момент поджигания смеси. Дело в том, что давление газов должно достигнуть максимальной величины именно в тот момент, когда поршень находится в ВМТ, для чего и необходимо опережение зажигания.
Для регулировки угла опережения в современных двигателях используется электроника, в то время как в старых образцах это происходит с помощью механики.
В целом все это приводит к поставленной задаче – максимально эффективному использованию сгоревшего топлива. А учитывая то обстоятельство, что сгорание топлива занимает практически фиксированное время, то для повышения эффективности двигателя необходимо увеличить угол опережения зажигания при повышении оборотов.
Выпуск – четвертый такт. Работа на данном этапе происходит следующим образом: после выхода рабочего цикла из НМТ открывается выпускной клапан, в этот момент движущийся вверх поршень выталкивает отработанные газы из цилиндра двигателя. При достижении поршнем ВМТ выпускной клапан закрывается и цикл повторяется снова.
Однако стоит иметь в виду, что для начала следующего процесса (например, впуска) не обязательно должен быть полностью завершен предшествующий процесс (например, выпуск).
Подобное положение, когда открытыми оказываются одновременно оба клапана (впускной и выпускной), называется перекрытием клапанов. Более того, такое положение бывает специально предусмотрено и может служить для лучшего наполнения цилиндров горючей смесью и лучшей очистки цилиндров от отработанных газов.
К преимуществам четырехтактного двигателя можно отнести следующие характеристики: большой ресурс, большая (по сравнению с другими двигателями) экономичность, более чистый выхлоп, меньший шум, к тому же не требуется выхлопная система.
ПРИНЦИП РАБОТЫ ДВУХТАКТНОГО ДВИГАТЕЛЯ
В отличие от четырехтактного двигателя рабочий цикл двухтактного происходит в течение одного оборота коленчатого вала.
Из четырех тактов предыдущего двигателя в данном случае присутствуют только два – сжатие и расширение. Два других цикла – впуск и выпуск – заменены в таком двигателе процессом продувки цилиндра вблизи НМТ поршня. В этот момент свежая струя рабочей смеси вытесняет отработанные газы из цилиндра.
Если остановиться на этом подробнее, то рабочий цикл двухтактного двигателя выглядит следующим образом.
В то время когда поршень двигается вверх, происходит сжатие рабочей смеси в цилиндре. Одновременно с этим поршень, движущийся вверх, создает разрежение в кривошипной камере (рис. 15).
Рисунок 15. Двухтактный двигатель: 1 – выпускной клапан; 2 – форсунка; 3 – продувочный насос; 4 – продувочные (впускные) окна
Под воздействием создаваемого разрежения клапан впускного коллектора открывается и свежая порция топливовоздушной смеси (обычно с добавлением масла) засасывается в кривошипную камеру.
В ходе движения поршня вниз повышается давление в кривошипной камере и клапан закрывается. Сам же процесс сгорания и расширения рабочей смеси происходит точно так же, как и в четырехтактном двигателе. Однако в момент движения поршня вниз открывается так называемое впускное окно (т. е. поршень перестает перекрывать его). Через это окно выхлопные газы, все еще находящиеся под большим давлением, устремляются в выпускной коллектор. Через некоторое время таким же образом поршень открывает впускное окно, которое расположено со стороны впускного коллек тора.
В это время свежая смесь выталкивается из кривошипной камеры идущим вниз поршнем и попадает в рабочую камеру двигателя, где окончательно вытесняет отработанные газы. Часть рабочей смеси при этом выбрасывается в выпускной коллектор. Во время движения поршня вверх часть свежей смеси, которая была вытолкнута из выпускного коллектора, засасывается обратно в кривошипную камеру.
При одинаковом объеме цилиндра двухтактный двигатель должен иметь почти в два раза большую мощность, чем четырехтактный. Однако это потенциальное преимущество далеко не всегда возможно полностью реализовать. Прежде всего это затрудняется недостаточной эффективностью продувки по сравнению с нормальным впуском и выпуском. Но все-таки при одинаковом литраже двухтактный двигатель мощнее в 1,5 или 1,8 раза.
Неотъемлемое преимущество двухтактного двигателя перед четырехтактным заключается в его компактных габаритах из-за отсутствия громоздкой системы клапанов и распределительного вала. К преимуществам двухтактного двигателя можно также отнести отсутствие громоздких систем смазки и газораспределения, большую мощность в пересчете на 1 л рабочего объема, простоту и дешевизну изготовления.
Преимущества и недостатки бензинового и дизельного двигателя
Если судить о преимуществах и недостатках бензинового и дизельного двигателя, то можно сразу сказать, что каждый из этих видов имеет свои плюсы и минусы, по которым нельзя назвать один двигатель лучше другого. И поэтому выбор одного из варианта двигателя зависит от конкретных потребностей и предпочтений автолюбителя. Итак, рассмотрим отдельно основные плюсы и минусы каждого из двигателей: К основным плюсам бензинового двигателя относительно дизельного можно отнести более удобную эксплуатацию – не требует перехода на зимнее топливо, более низкий уровень шума, большую экологичность, а так же большую удельную мощность объема, то есть достижение большей мощности при малых объемах двигателя.
Рассуждая о плюсах дизельного двигателя можно выделить его экономичность, которая достигается за счет более низкой цены на дизель, относительно бензина и более низкого потребления топлива. Нельзя не отметить, что к плюсам двигателя этого вида можно отнести более высокий крутящий момент, чем у бензинового двигателя, что очень полезно для грузовых автомобилей. А так же меньшую пожароопасность, благодаря тому, что дизельное топливо подвержено меньшей способности к возгоранию.
Карбюраторные и инжекторные двигатели.
Приготовление горючей смеси в карбюраторных двигателях происходит в специальном устройстве – карбюраторе, в котором осуществляется процесс смешивания топлива с потоком воздуха, за счет искусственной конвекции, создаваемой аэродинамическими силами потока воздуха, засасываемого двигателем.
В инжекторных двигателях процесс смесеобразования организован иначе. Топливо впрыскивается в воздушный поток, через специальные форсунки. Дозируется подача топлива электронным блоком управления, или (в более старых автомобилях) механической системой.
Первые инжекторные двигатели появились в 1997 году. Их внедрению способствовала корпорация OMC, которая выпустила двигатель, сконструированный с использованием технологии FICHT. Ключевым фактором этой технологии было использование специальных инжекторов, которые позволяли впрыскивать топливо сразу в камеру сгорания. Это революционное решение, в купе с использованием современного бортового компьютера, сделало возможным точное дозирование топлива, при перемещении поршня. В полость коленчатого вала впрыскивается чистое масло, без примесей топлива. Благодаря новой технологии конструкторам удалось изобрести двухтактный двигатель, который не уступал по экономичности карбюраторному четырехтактному двигателю, а также был компактным и легким.
Из-за новых стандартов на чистоту выхлопа, автомобильным производителям пришлось перейти от классических карбюраторных двигателей к инжекторным, а также установить современные нейтрализаторы выхлопных газов. Для функционирования катализатора необходим постоянный состав выхлопного газа, который поддерживается системой впрыска топлива. Обязательной составляющей катализатора является датчик содержания кислорода, благодаря которому отслеживается точное соотношение кислорода, недоокисленных продуктов сгорания топлива и оксидов азота, которые сможет нейтрализовать катализатор.
Принцип работы двигателя внутреннего сгорания
Двигатель внутреннего сгорания — устройство, преобразующее энергию в рабочей полости. Изучение принципа работы ДВС. Процессы, происходящие в течение одного периода. Рабочий процесс двухтактного двигателя, источник энергии для автомобиля различного типа.
Рубрика | Транспорт |
Вид | реферат |
Язык | русский |
Дата добавления | 05.12.2014 |
Размер файла | 30,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Министерство образования РФ ФГБОУ ВПО
Ишимский государственный педагогический институт им. П.П. Ершова
Принцип работы двигателя внутреннего сгорания
двигатель двухтактный автомобиль
1. История развития ДВС
2. Принцип работы ДВС
3. Применение ДВС
1. История развития ДВС
Двигатель — устройство (паровая машина, турбина, двигатель внутреннего сгорания и т.п.) для непрерывного преобразования энергии рабочего тела (паров жидкости, газа или смеси газов) в механическую энергию.
Таким образом, двигатель внутреннего сгорания (ДВС) представляет собой устройство, преобразующее энергию в рабочей полости, т. е. внутри двигателя. Попытки создать устройство, подобное двигателю внутреннего сгорания, начались с 18 века. Созданием устройства, которое могло бы преобразовывать энергию топлива в механическую, занимались многие изобретатели.
Первыми в этой области были братья Ньепс из Франции. Они придумали прибор, который сами назвали «пирэолофор». В качестве топлива для данного двигателя должна была использоваться угольная пыль. Однако, данное изобретение так и не получило научного признания, и существовала, по сути, только в чертежах.
Первым успешным двигателем, который начал продаваться, был двигатель внутреннего сгорания бельгийского инженера Ж.Ж. Этьена Ленуара. Год рождения этого изобретения — 1858. Это был двухтактовый электрический двигатель с карбюратором и искровым зажиганием. Топливом для устройства служил каменноугольный газ. Однако изобретатель не учел потребность в смазке и охлаждении своего двигателя, поэтому он работал очень недолго. В 1863 году Ленуар переделал свой двигатель — добавил недостающие системы и в качестве топлива ввел в использование керосин. Устройство было крайне несовершенным — сильно нагревался, неэффективно использовал смазку и топливо. Однако с помощью него ездили трехколесные автомобили, которые так же были далеки от совершенства.
В 1864 году был изобретен одноцилиндровый карбюраторный двигатель, работающий от сгорания нефтепродуктов. Автором изобретения стал Зигфрид Маркус, он же представил общественности транспортное средство, развивающее скорость 10 миль в час.
В 1873 году еще один инженер — Джордж Брайтон — смог сконструировать 2-х цилиндровый двигатель. Изначально он работал на керосине, а позже на бензине. Недостатком этого двигателя была излишняя массивность.
В 1876 году произошел рывок в индустрии создания двигателей внутреннего сгорания. Николас Отто впервые создал технически сложное устройство, которое эффективно преобразовывало энергию топлива в механическую энергию.
В 1883 году француз Эдуард Деламар разрабатывает чертеж двигателя, топливом для которого служит газ. Однако его изобретение существовало только в 1185 году, в истории автомобилестроения появляется громкое имя — Готтлиб Даймлер. Он смог не только изобрести, но и запустить в производство прототип современного газового двигателя — с вертикально расположенными цилиндрами и карбюратором. Это был первый компактный двигатель, который к тому же способствовал развитию приличной скорости перемещения. Параллельно с Даймлером над созданием двигателей и автомобилей работал Карл Бенц. В 1903 году предприятия Даймлера и Бенца объединились, дав начало полноценному предприятию автомобилестроения. Так началась новая эра, послужившая дальнейшему совершенствованию двигателя внутреннего сгорания.
2. Принцип работы ДВС
Как мы уже знаем, двигатель преобразует энергию рабочего тела в механическую. Рабочим телом в ДВС является смесь газов, состав которой в течение рабочего цикла изменяется. Энергия рабочего тела, которая сообщается газу при сгорании топлива, преобразуется в механическую в процессе расширения газа в рабочей полости.
Рабочая полость [Рис. 1] представляет собой замкнутый объем, величина которого изменяется с помощью рабочего органа — поршня, ротора и т.п. В зависимости от типа рабочего органа и характера его движения двигатели внутреннего сгорания подразделяются на несколько групп: поршневые с возвратно-поступательным движением поршня; свободно-поршневые с изменяемым хо дом поршня; роторные, в которых рабочий орган вращается относительно неподвижной оси или относительно оси, движущейся по круговой замкнутой орбите; двигатели с качающимися рабочими органами, в которых рабочие органы совершают возвратно вращательное колебательное движение и др.
Рис. 1. Рабочая полость двигателя внутреннего сгорания
1. Коленчатый вал.
6. Впускной клапан.
7. Свеча зажигания.
8. Выпускной клапан.
К рабочей полости примыкают устройства (системы), предназначенные для подвода рабочего тела в рабочую полость и для его удаления из рабочей полости. Эти системы называют соответственно впускной и выпускной. Кроме впускной и выпускной систем для обеспечения работоспособности двигатель снабжен и другими системами: системой пуска, системой топливоподачи, системой зажигания, системой охлаждения, системой смазки и т.д.
В рабочей полости двигателя и его системах осуществляются в определенном порядке рабочие процессы, которые периодически повторяются. Совокупность процессов, происходящих в течение одного периода, называется рабочим циклом.
Рабочая полость в двигателе образована поверхностями цилиндра, головки цилиндра и днища поршня. Герметизация зазора между поршнем и цилиндром осуществлена с помощью поршневых колец, устанавливаемых в канавки на поршне. Поршень совершает возвратно-поступательное движение, которое с помощью кривошипно-шатунного механизма преобразуется во вращательное движение кривошипа. Крайнее верхнее положение поршня, соответствующее минимальному объему надпоршневой полости, называется верхней мертвой точкой (ВМТ), крайнее нижнее, соответствующее максимальному объему рабочей полости, — нижней мертвой точкой (НМТ), расстояние по оси цилиндра от ВМТ до НМТ — ходом поршня.
Перемещение поршня от ВМТ к НМТ и наоборот называется тактом. Если рабочий цикл совершается за 4 такта (два оборота кривошипа), то такие двигатели называются четырехтактными, если за два такта (один оборот коленчатого вала) — двухтактными. Протекание процессов в рабочей полости сопровождается, в зависимости от такта, изменением давления, температуры, состава и массы рабочего тела. В зависимости от определяющего процесса, протекающего в цилиндре четырехтактного двигателя, такты названы: такт впуска (наполнения); такт сжатия; такт сгорания — расширения; такт выпуска. В двухтактном двигателе процессы газообмена осуществляются в конце такта расширения и в начале такта сжатия путем подачи воздуха (топливно-воздушной смеси) к продувочным окнам (клапанам) при повышенном давлении, создаваемом нагнетателем.
Четырехтактный двигатель работает следующим образом: в первый такт свежая порция топливно-воздушной смеси всасывается в цилиндр через открытый впускной клапан; в следующий такт (такт сжатия) впускной и выпускной клапаны закрыты, и топливно-воздушная смесь сжимается в объёме; затем сжатое топливо воспламеняется свечой зажигания, расположенной над поршнем, при сгорании высвобождается энергия, которая воздействует на поршень, заставляя его двигаться вниз (такт сгорания — расширения); в завершающий такт (выпуска) открываются выпускные клапаны, и выхлопные газы, проходя через них, очищают цилиндр. По окончании 4-го такта цикл повторяется.
Рабочий процесс двухтактного двигателя в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе происходят так же, как и в четырёхтактном, но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мёртвой точки.
4. Применение ДВС
Двигатель внутреннего сгорания является основным источником энергии на автомобилях различного типа и назначения. Несмотря на успехи развития двигателей других типов, они еще по своим основным характеристикам уступают двигателям внутреннего сгорания, и их применение пока носит экспериментальный характер. Мощность автомобильных двигателей внутреннего сгорания в настоящее время превышает 1500 кВт.
На железнодорожном транспорте поршневые паровые машины почти повсюду заменены электрическим приводом и приводом от двигателей внутреннего сгорания. В нашей стране около половины грузооборота осуществляется тепловозами с двигателями внутреннего сгорания. Известны попытки использования газовых турбин для привода локомотивов, однако они не получили заметного распространения. Единичная мощность тепловозных двигателей составляет около 4400 кВт.
В речном флоте двигатели внутреннего сгорания в настоящее время устанавливают на всех вновь вводимых в эксплуатацию судах.
В морском флоте двигатели внутреннего сгорания также являются основным источником энергии для небольших судов и большей части судов с энергетической установкой мощностью до 20 МВт.
В стационарной энергетике двигатели внутреннего сгорания широко используют на небольших электростанциях (мощностью в несколько киловатт), энергопоездах и аварийных энергоустановках.
Таким образом, двигатели внутреннего сгорания имеют большое значение в народном хозяйстве страны.
1. Дьяченко В.Г. Теория двигателей внутреннего сгорания. Учебник / В.Г. Дьяченко. — Харьков: ХНАДУ, 2009.- 500 с.
2. Орлин А.С. Двигатели внутреннего сгорания. Устройство и работа поршневых и комбинированных двигателей. Учебник А.С. Орлин.-4-е изд., М.: Машиностроение, 1990.-289 с.
Размещено на Allbest.ru
Подобные документы
История создания универсального парового двигателя. Понятие коэффициента полезного действия. Паровая машина Уатта. Принцип работы двухтактного двигателя внутреннего сгорания. Такт сжатия и такт рабочего хода. Рабочие циклы двухтактных двигателей.
презентация [985,6 K], добавлен 15.12.2014
Изучение конструкции и принципа действия двигателя внутреннего сгорания и его основных систем. Расчёт рабочего цикла с учётом особенностей потребителя для ряда режимов работы. Разработка рекомендаций для повышения основных характеристик двигателя.
курсовая работа [7,6 M], добавлен 16.01.2012
Сущность и процесс запуска двигателя внутреннего сгорания, причины его широкого использования в транспорте. Принципы работы бензинового, дизельного, газового, роторно-поршневого двигателей. Функции стартера, трансмиссии, топливной и выхлопной систем.
презентация [990,4 K], добавлен 18.01.2012
Двигатель внутреннего сгорания (ДВС) – тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу. История создания и развитие ДВС, строение и разновидности, принцип работы двигателей.
творческая работа [925,7 K], добавлен 06.03.2008
Применение на автомобилях и тракторах в качестве источника механической энергии двигателей внутреннего сгорания. Тепловой расчёт двигателя как ступень в процессе проектирования и создания двигателя. Выполнение расчета для прототипа двигателя марки MAN.
курсовая работа [169,7 K], добавлен 10.01.2011