Устройства форсунок бензинового двигателя

Устройство форсунки двигателя

Автомобильная форсунка — устройство, отвечающее за непосредственное распыление топлива внутри камеры сгорания. Непосредственный впрыск — модификация распределенного впрыска горючего, где горючее впрыскивается в цилиндры напрямую. Форсунка — основной связывающий компонент между топливным насосом и мотором. Существует несколько модификаций данного устройства. На современных двигателях используют форсунки, которые оснащены электронным управлением впрыска. Главное предназначение форсунок:

  • обеспечение правильной дозировки топливной смеси;
  • обеспечение правильной струи топливной смеси — кол-во, давление, угол.

Принцип действия форсунки

Топливо в форсунку подается под давлением. При этом блок управления мотором посылает электроимпульсы на электромагнит инжектора, которые активируют работу игольчатого клапана, отвечающего за состояние канала (открыто/закрыто). Количество поступающего топлива определяется длительностью поступающего импульса, влияющего на промежуток нахождения игольчатого клапана в открытом состоянии.

По методу впрыска современные топливные форсунки делятся на три вида – электромагнитные, электрогидравлические и пьезоэлектрические.

  • Электромагнитные форсунки. Такой вид форсунок зачастую устанавливают в бензиновые двигатели. Подача напряжения на обмотку возбуждения клапана происходит строго в установленное время, в соответствии с заложенной программой. Напряжение создает определенное магнитное поле, которое затягивает грузик с иглой из клапана, тем самым высвобождая сопло. Результатом всех действий является впрыск нужного количества топлива. По мере снижения напряжения, игла принимает исходное положение. Визуальное устройство форсунки бензинового двигателя показано на рисунке слева.
  • Электрогидравлическая форсунка. Использование такой системы можно часто увидеть в автомобилях, оснащённых дизелем. Такие инжекторные форсунки состоят из сливной и впускной дроссели, электромагнитного клапана и камеры. Путем изменения давления топлива легко добиться возможности управлять его подачей на цилиндры, и эта особенность является главным отличием инжектора от аналогичных механизмов. Визуальное устройство форсунки дизельного двигателя показано на рисунке слева.
  • Пьезоэлектрические форсунки. Последний вид форсунок принято считать наиболее совершенным и перспективным среди всех описанных видов. Пьезофорсунки используются только на дизельных двигателях внутреннего сгорания с системой подачи топлива Common Rail. Визуальное устройство форсунки Common Rail показано на рисунке слева.

Проблемы и неисправности форсунок двигателя

Для поддержания нормальной работы топливной системы необходимо проводить периодическую чистку форсунок. По мнению специалистов, процедура должна выполняться каждые 20-30 тыс. км пробега, но на практике необходимость в таких работах возникает уже после 10-15 тыс. км. пробега. Это связано с некачественным топливом, плохим состоянием дорог и не всегда правильным уходом за машиной.

К самым актуальным проблемам, преследующими форсунки любого типа, относится появление на стенках деталей отложений, являющихся следствием использования низкокачественного топлива. Результатом является появление загрязнений в системе подачи горючей жидкости и возникновение перебоев в работе, потеря мощности мотором, чрезмерный расход ГСМ. Причинами, влияющими на работу форсунок, могут быть:

  • чрезмерное содержание серы в топливе;
  • коррозия металлических элементов;
  • износ;
  • засорение фильтров;
  • воздействие высоких температур;
  • проникновение влаги и воды.

Надвигающиеся неполадки можно определить по ряду признаков, таких как появление незапланированных сбоев при старте двигателя, увеличение расхода топлива, появление выхлопа черного цвета, нарушение ритмичности работы мотора на холостом ходу.

Способы чистки форсунок

Существует три метода чистки форсунок:

  • ультразвуковая чистка;
  • промывка инжектора через топливную рампу;
  • добавление в топливо специальной промывки.

Ультразвуковая чистка, пожалуй, самая эффективная, но имеет ряд недостатков. Так, с помощью данного метода очищаются лишь сами форсунки, другие же части топливной системы не затрагиваются. Кроме того, данный метод исключен для форсунок, в конструкции которых содержатся элементы керамики (они разрушаются под действием ультразвука).

Метод чистки инжектора через топливную рампу подразумевает присоединение к ней трубок, через которые подается специальный химический состав под высоким давлением. Подобную процедуру выполняют, как правило, на сервисе. Стоимость ее довольно высока. После данной процедуры в обязательном порядке следует заменить свечи зажигания.

Прочистка форсунок посредством специального химического состава, заливаемого в бак, зачастую малоэффективна. Химические соединения, как правило, не способны справиться с сильным загрязнением. Данный способ хорош в профилактических целях, но не для чистки непосредственно. В состав подобных соединений для чистки входят жидкие компоненты, нацеленные на удаление налета, а также мелкодисперсные частицы с абразивными свойствами. Они должны очищать топливопровод от продуктов окисления и налета, а форсунки под их воздействием должны очищаться от нагара. В результате форма распыла топлива вновь должна приобрести правильную конусообразную форму.

Виды, устройство и принцип работы топливных форсунок

Использование форсунок (инжекторов) позволило сделать работу автомобильного двигателя более экономичной и контролируемой в сравнении с карбюраторными системами. Их главная задача – обеспечение точной дозировки топлива, подаваемого в камеру сгорания, в определенный момент времени и образование оптимальной топливовоздушной смеси. Применяются форсунки и на бензиновых, и на дизельных моторах. Конструктивно они представляют собой сложные устройства высокой точности обработки.

Функции и виды форсунок

Топливная форсунка, или инжектор, представляет собой своеобразный клапан, работа которого контролируется блоком управления (ЭБУ) двигателя. Это позволяет подавать топливо, находящееся под высоким давлением, строго ограниченными порциями и в заданный момент времени. В зависимости от типа системы впрыска форсунка может устанавливаться в различных местах. Так, при моновпрыске она располагается перед дросселем во впускном трубопроводе. В системе с распределенным впрыском форсунки устанавливаются в ГБЦ перед клапанами. При этом для каждого цилиндра предусматривается свой отдельный инжектор. В двигателях с непосредственным впрыском форсунки находятся в верхней части цилиндра, подавая топливо сразу в камеру сгорания.

По способу управления (типу привода) инжекторы разделяют на следующие типы:

  • механические;
  • электромагнитные;
  • электрогидравлические;
  • пьезоэлектрические.

Устройство механической форсунки

Механические форсунки применяются на дизелях. Принцип их работы основан в воздействии усилия давления топлива на запорную пружину. Когда давление в системе выше сопротивления пружины, игла поднимается и происходит впрыск. После того как давление падает, игла возвращается в исходное положение. Стоит отметить, что давление таких форсунок дизельных двигателей очень низкое, а потому они редко применяются в современном автомобилестроении.

Электромагнитные и гидромеханические инжекторы могут иметь:

  • клапан форсунки со сферическим профилем;
  • штифтовой клапан;
  • дисковый клапан.

Как устроена электромагнитная форсунка двигателя

Такой тип инжекторов используется преимущественно в бензиновых системах, включая двигатели с непосредственным впрыском. По функциональному назначению электромагнитные форсунки разделяются на пусковые (например, в системе “K-Jetronic”) и рабочие. Последние могут быть центральными (выполняют точечный впрыск) и индивидуальными (распределяют топливо по цилиндрам).

Устройство электромагнитной форсунки

Конструктивно электромагнитная форсунка самая простая. Ее основными элементами являются:

  • герметичный корпус;
  • разъем для подключения к электрической цепи;
  • запирающая пружина;
  • обмотка возбуждения клапана;
  • якорь электромагнита;
  • игла;
  • уплотнители;
  • сопло;
  • фильтр-сеточка форсунки;
  • распылитель.

В заданный момент времени ЭБУ двигателя подает напряжение на обмотку возбуждения, что обеспечивает формирование электромагнитного поля, воздействующего на якорь с иглой. В этот момент усилие сжатия пружины становится меньше магнитной силы, якорь втягивается, игла поднимается и освобождает сопло инжектора. Управляющий клапан форсунки двигателя открывается, и происходит впрыск топлива под высоким давлением. Когда блок управления прекращает подачу энергии на обмотку, пружина возвращает иглу в исходное положение.

Вопреки расхожему заблуждению, сама электромагнитная форсунка бензинового двигателя не создает давление. Давление в системе создается топливным насосом.

Электромагнитные инжекторы подбираются в зависимости от мощности двигателя. Прежде всего, необходимо знать, какое сопротивление у форсунок. В заводском исполнении они бывают низкоомные (2-6 Ом) и высокоомные 12-16 Ом. При низком сопротивлении может быть установлен дополнительный резистор в 6-8 Ом, который снизит потребление тока.

Читайте также:  Сборка мотоблока нева мб 2 с двигателем briggs stratton

Принцип действия электрогидравлической форсунки

Электрогидравлический инжектор (насос-форсунка) – это форсунки топливные дизельные. Они подходят для типовых ТНВД и систем Common Rail. Состоят такие форсунки из следующих элементов:

  • сопло;
  • пружина;
  • камера управления;
  • дроссель слива;
  • якорь электромагнита;
  • магистраль слива топлива;
  • разъем для подключения к электрической цепи;
  • обмотка возбуждения;
  • штуцер подачи топлива;
  • дроссель на впуске;
  • поршень;
  • игла распылителя.

В момент начала цикла управляющий электромагнитный клапан форсунки полностью закрыт. Топливо в системе давит на поршень, находящийся в камере управления, а игла инжектора плотно прижата к седлу. ЭБУ двигателя подает напряжение на обмотку возбуждения электромагнитного клапана. Дроссель слива открывается, и топливо поступает в сливную магистраль.

Дроссель впуска, в свою очередь, не позволяет мгновенно выровнять давление на впуске и в камере управления. Таким образом, на некоторый промежуток времени усилие, воздействующее на поршень, уменьшается, а давление на иглу остается высоким. Эта разность давлений и обеспечивает подъем иглы и впрыск топлива.

Особенности работы пьезоэлектрической форсунки

Это исключительно дизельная форсунка, которая считается наиболее прогрессивной, поскольку обеспечивает более быстрое срабатывание, максимально точную дозировку и позволяет выполнять многократный впрыск на протяжении одного цикла. Она применяется в дизельных двигателях Common Rail. Пьезоэлектрические форсунки двигателя состоят из таких деталей:

  • игла;
  • уплотнители;
  • блок дросселей;
  • пружина запора иглы;
  • переключающий клапан форсунки;
  • пружина клапана;
  • поршень клапана;
  • пьезоэлемент;
  • сливная магистраль;
  • поршень толкателя;
  • фильтр;
  • разъем для подключения к цепи питания;
  • нагнетательная магистраль.

Принцип работы такого инжектора основан на изменении длины пьезоэлемента при подаче на него напряжения. В начальном положении игла под воздействием давления топлива посажена на седло. Когда ЭБУ двигателя посылает сигнал на пьезоэлемент, последний, изменяя длину, воздействует на поршень толкателя. Переключающий клапан форсунки открывается, и топливо подается на слив. Аналогично электрогидравлическим системам, создается разность низкого давления над иглой и высокого под ней, и она поднимается, выполняя впрыск дизтоплива. Количество последнего при этом регулируется длительностью подачи напряжения на пьезоэлемент пьезофорсунки и давлением в топливной рампе двигателя.

Рабочие параметры и неисправности инжекторов

Одной из основных характеристик форсунки является факел распыла. Для обеспечения корректной работы двигателя топливо должно распыляться под высоким давлением и на большую площадь. При этом размеры капель горючего должны быть как можно меньше. Это позволяет ускорить процесс сгорания и уменьшить расход топлива. Если же подача бензина или дизеля будет осуществляться струей, возникнут провалы в работе мотора, увеличится количество сажи в выхлопе. Происходит это, когда распылитель инжектора загрязняется.

Также важным параметром является время впрыска форсунок, или лаг открытия и закрытия. Он зависит от множества параметров напряжения, уровня давления и типа топлива. Измеряется лаг лабораторным методом, в ходе которого определяется количество пролитого топлива за единицу времени.

Несмотря на сложное устройство, топливные инжекторы имеют длительный срок эксплуатации. В среднем он составляет от 100 до 150 тысяч километров пробега. Основным требованием для обеспечения продолжительности работы форсунок является качество топлива и своевременный технический осмотр автомобиля.

Топливные форсунки двигателя: устройство, принцип работы и промывка

Как работают топливные форсунки двигателя автомобиля, их устройство и методы технического обслуживания – химическая промывка и ультразвуковая чистка инжектора, будут подробно описаны в статье.

Форсунка топливной системы – один из важных компонентов, влияющих на параметры работы двигателя внутреннего сгорания, требует периодического обслуживания по ее очистке от отложений, возникающих на рабочих частях в процессе ее эксплуатации. Назначение форсунки – распылить топливо, превратив его в мелкодисперсную взвесь.

От качества образования топливно-воздушной смеси в камере сгорания зависит мощность, расход топлива и запуск двигателя. Поддержание форсунок в чистом состоянии продлевает срок их службы и увеличивает моторесурс двигателя.

Виды топливных форсунок

Существует несколько видов топливных форсунок (инжекторов), используемых в двигателях внутреннего сгорания легковых автомобилей, и методов их промывки.

В зависимости от топлива, используемого в автомобильном двигателе, типы форсунок классифицируются на:

  • форсунки для бензинового двигателя;
  • форсунки для дизельного двигателя.

Бензиновые инжекторы применяются в отличающихся друг от друга системах впрыска топлива, а дизельные инжекторы имеют разные физические методы управления впрыском топлива.

Устройство форсунки бензинового двигателя

Современные топливные форсунки для бензинового двигателя бывают двух вариантов исполнения в зависимости от вида впрыска: форсунка впрыска топлива во впускной коллектор и впрыска в камеру сгорания (непосредственный впрыск).

Топливные инжекторы состоят из корпуса с топливными каналами, катушки и иглы клапана с якорем электромагнита. Управление количеством подачи топлива производится электромагнитным клапаном.

Топливо под давлением подается в корпус инжектора через тонкое сито, и она либо закрыта (нет сигнала на входе), либо открыта (есть сигнал на входе).

При непосредственном впрыске топлива сопло каждого инжектора оснащено несколькими выходными отверстиями. Такой впрыск называют многоструйным.

Преимущество многоструйного впрыска перед одноструйным: факел распыла оптимальным образом адаптирован к камере сгорания по форме и углу расположения.

Распылитель топлива каждого инжектора оснащен шестью отверстиями. Каждая из шести струй индивидуально адаптирована к условиям камеры сгорания.

Центральное положение топливной форсунки обеспечивает более равномерное распределение и оптимальное приготовление смеси в камере сгорания.

При расположении форсунки под углом к вертикальной оси хода поршня сопло имеет семь выпускных отверстий. Впрыск осуществляется в камеру сгорания под точно вычисленным углом, поэтому выпускные отверстия расположены эксцентрически.

Впрыскивание под точно определенным углом препятствует тому, чтобы бензин попадал в открытые впускные клапаны.

1. Топливная форсунка. 2. Свеча зажигания. 3. Выемка в днище поршня. 4. Струя впрыскиваемого топлива. A Центральное расположение выпускных отверстий. B Эксцентрическое расположение выпускных отверстий.

Кроме того, каждая из семи конических струй индивидуально адаптирована к условиям камеры сгорания. За счет этого создается структура струи, чья форма обеспечивает оптимальное приготовление горючей смеси в камере сгорания.

Существенным различием является более высокое давление и значительно более короткое время, имеющееся в распоряжении для впрыскивания бензина в камеру сгорания. Рисунок показывает сравнение впрыска во впускной коллектор и непосредственного впрыска бензина.

1. Впрыск во впускной коллектор. 2. Непосредственный впрыск бензина. 3. Количество впрыскиваемого топлива. 4. Полная нагрузка. 5. Холостой ход. 6. Время впрыскивания в миллисекундах.

В большинстве современных автомобилях с впрыском горючей смеси во впускной коллектор, давление составляет 3,8-4,0 бар, тогда как при непосредственном впрыске, изменяется от 20 до 120 бар в зависимости от нагрузки на двигатель.

Впрыск во впускной коллектор осуществляется за два оборота коленчатого вала. При частоте вращения коленчатого вала 6000 об/мин соответствует продолжительности впрыска около 20 мс.

Потребление топлива при непосредственном впрыске на холостых оборотах значительно ниже по отношению к полной нагрузке, чем при впрыске во впускной коллектор (коэффициент 1:12). Продолжительность впрыска в режиме холостого хода составляет примерно 0,4 мс.

Читайте также:  Как определить автомобиль после ремонта

Устройство форсунки дизельного двигателя

В дизельных двигателях применяется несколько типов топливных форсунок – это инжекторы с электромагнитными клапанами и пьезоэлектрические форсунки. О них я и расскажу подробнее.

С помощью инжекторов осуществляется управление началом впрыска и количеством впрыскиваемого топлива. Дизельные форсунки осуществляют впрыск топлива непосредственно в камеру сгорания двигателя.

Момент впрыска рассчитывается системой углового опережения в PCM (модуль управления силовым агрегатом). Основными входными параметрами для этого служат сигналы датчика CKP (положение коленчатого вала) и датчика CMP (положение распределительного вала).

Устройство форсунки с электромагнитным клапаном

Форсунки в двигателе смонтированы в головке блока цилиндров и выступают внутрь по центру отдельных камер сгорания. Топливо под высоким давлением через канал направляется в форкамеру распылителя и одновременно через впускной дроссель в управляющую камеру клапана.

Управляющая камера клапана соединена с возвратом топлива через выпускной дроссель, который открывается электромагнитным клапаном. В закрытом состоянии (электромагнитный клапан обесточен) выпускной дроссель закрыт шариком клапана, поэтому топливо не может выйти из управляющей камеры клапана.

В этом положении в форкамере распылителя и в управляющей камере клапана устанавливается одинаковое давление (баланс давления). На иглу распылителя действует дополнительно усилие собственной пружины, поэтому игла распылителя остается закрытой (гидравлическое давление и усилие пружины иглы распылителя).

При активации электромагнитного клапана открывается выпускной дроссель. За счет этого возрастает давление в управляющей камере клапана, а также гидравлическое усилие, действующее на управляющий золотник клапана.

Как только гидравлическая сила в управляющей камере клапана станет меньше гидравлической силы в форкамере распылителя и пружины иглы распылителя, игла распылителя открывается. Топливо через отверстия распылителя впрыскивается в камеру сгорания.

Спустя заданное время, подача электропитания к электромагнитному клапану прерывается. После этого выпускной дроссель снова закрывается. С закрытием выпускного дросселя в управляющей камере клапана через впускной дроссель восстанавливается давление из топливной рампы.

Это повышенное давление с большим усилием воздействует на управляющий золотник клапана. Эта сила и сила упругости пружины иглы распылителя теперь превосходят силу в форкамере распылителя, и игла распылителя закрывается.

Устройство пьезоэлектрической форсунки

Открытие и закрытие форсунки выполняется с помощью пьезоэлемента, расположенного внутри инжектора. Пьезоэлектрический инжектор включается примерно в четыре раза быстрее, по сравнению с инжектором, управляемой электромагнитом. Это дает следующие преимущества:

  • многоточечный впрыск с переменными началом впрыска и интервалами;
  • подача малых доз топлива для предварительного впрыска;
  • низкий уровень шума (до 3 дБ);
  • экономия расхода топлива (до 3%);
  • уменьшения выброса отработавших газов (до 20%);
  • повышение мощности двигателя (до 7%);
  • улучшения плавности хода.

В пьезоэлектрических инжекторах происходит косвенное управление иглой распылителя, это означает, что открытие и закрытие иглы распылителя происходит через гидравлический контур. Гидравлический контур состоит из области низкого и высокого давления.

Управляющий клапан является переходом между областью высокого и низкого давления – доза впрыскиваемого топлива зависит от длительности открытия клапана управления.

Если пьезоэлемент не активирован PCM, управляющий клапан находится в исходном положении. Это означает, что область высокого давления отделена от области низкого давления. На иглу распылителя действует давление топливной рампы плюс усилие пружины. Распылитель инжектора закрыт.

При активации пьезоэлемента открывается управляющий клапан и закрывается байпас. Давление в управляющей камере теперь не может быть сброшено в возврат топлива. Благодаря соотношению расходов выпускного и впускного дросселя давление в управляющей камере понижается.

Теперь давление топливной рампы на иглу распылителя превышает давление в управляющей камере и усилие пружины. Игла распылителя приподнимается, и начинается впрыск. Если PCM разряжает пьезоэлемент, управляющий клапан снова освобождает байпас.

Через впускной и выпускной дроссели управляющая камера снова заполняется. Через байпас быстро повышается давление в управляющей камере. Как только давление управляющей камеры плюс усилие пружины снова станет выше, чем давление топливной рампы на иглу распылителя, игла распылителя закрывается и впрыск заканчивается.

Гидравлический соединитель выполняет следующие функции: преобразование и усиление хода пьезоэлемента, компенсация возможных зазоров, прекращение впрыска в случае размыкания электрических контактов инжектора (например, при обрыве кабеля в процессе впрыска).

По своим функциям гидравлический соединитель подобен гидравлическому толкателю. Подпорное давление топлива вокруг гидравлического соединителя составляет около 10 бар. Подпорный клапан расположен в дренажном топливопроводе.

Когда пьезоэлемент не активирован, давление в гидравлическом соединителе уравновешивается давлением его окружающей среды (около 10 бар). При активации пьезоэлемента поршень смещается вниз. За счет этого возрастает давление в гидравлическом соединителе.

При этом небольшой объем утечек стекает из гидравлического соединителя через зазор направляющей поршня в контур низкого давления. При повышении давления в гидравлическом соединителе поршень управляющего клапана перемещается вниз вдоль гидравлического буфера, и начинает впрыск.

По окончании процесса впрыска недостача в соединителе снова заполняется. Это происходит в обратном направлении через направляющий зазор поршня. Подпорное давление около 10 бар имеет важное значение для корректной работы инжектора.

Устройство насос-форсунки

Количество насос-форсунок на дизельном двигателе соответствует количеству цилиндров, они установлены в головке блока цилиндров, имеют привод от распредвала или отдельного кулачкового вала и создают высокое давление топлива (2000 – 2500 бар), выполняя роль ТНВД.

Магистрали подачи и возврата дизтоплива расположены в корпусе головки цилиндров. Дизтопливо подается подкачивающим насосом и составляет 5-8 бар. Для уменьшения пульсаций топлива, в возвратной магистрали установлен редукционный клапан для поддержания давления в ней около 1 бар.

Насос-форсунка состоит из трех основных элементов, являющихся единым целым – насоса, управляющего электромагнитного клапана и форсунки. При движении плунжера насоса вверх под воздействием возвратной пружины 3 (рисунок ниже), солярка поступает через открытый управляющий клапан в полость высокого давления 4.

Клапан в открытом положении соединяет полость высокого давления с возвратной магистралью. Процесс создания высокого давления и впрыска происходит при движении плунжера вниз под действием коромысла или кулачка приводного вала ( в зависимости от системы привода) и подаче сигнала управления на клапан, для его закрытия.

Когда давление топлива превысит усилие пружины иглы распылителя, игла поднимается и начинается впрыск. При прекращении подачи напряжения на управляющий клапан, давление падает за счет возврата топлива в обратную магистраль, под действием пружины игла закрывает распылитель и впрыск прекращается.

Техническое обслуживание форсунок

Промывка автомобильных форсунок – такая же необходимая процедура ухода за автомобилем, как замена масла, тормозной жидкости, поддержание необходимого давления в шинах и т. д. Большинство автомобилистов процедуру технического обслуживания просто игнорируют, ссылаясь на недостаток времени, отсутствие “лишних” денег или откладывают на потом, а значит – никогда.

Рано или поздно наступает момент, когда (особенно в холодное время года), начиная утром запускать двигатель, сделать это с первой попытки не удается, и не обращая внимание на этот симптом, продолжают эксплуатировать автомобиль дальше.

Более щепетильные владельцы авто отправляются на компьютерную диагностику и, тратя деньги и время, которые можно было вложить в своевременный уход за топливной системой, получают, чаще всего, не корректное заключение о причинах такого поведения двигателя.

Начинается замена свечей, вспоминают про топливный фильтр, который “сто лет” уже не меняли, смена места заправки и т. д. Когда “танцы с бубном” вокруг автомобиля не приносят никаких результатов и все возможные и невозможные действия проделаны, дело доходит до промывки инжектора.

Категорически запрещается отсоединять электрический разъем пьезоэлектрической форсунки во время работы двигателя – это может привести к механическому повреждению силового агрегата.

Читайте также:  Простая схема регулятора оборотов асинхронного двигателя

Находится “опытный” гаражный автомастер, который дает совет: залить в бензобак присадку в топливо для очистки форсунок, и хорошо, если это хоть частично решает проблему, – некоторые присадки так “хороши”, что растворяя отложения на стенках бензобака и топливных магистралях серу и фракции тяжелых соединений, не останавливаясь в топливном фильтре, засоряют топливные инжекторы окончательно.

Есть два пути решения этой проблемы: радикальный – заменить инжекторы или буксировать автомобиль в автомастерскую для снятия и промывки на стенде ультразвуковой очистки, что тоже не всегда помогает.

Первая причина – недостаточная квалификация мастера: незнание устройства форсунок, которые он берется промывать. Ультразвуковые ванны для очистки разрушают керамические детали, которые могут присутствовать в конструкции – такие инжекторы чистить в ультразвуковой ванне категорически запрещено.

Вторая причина: ультразвуковое колебание может разрушить старое, “высохшее” лаковое изоляционное покрытие проводов катушки, и происходит замыкание в обмотке, что случается не часто, но если это возможно – значит не исключено. Чтобы избежать всех этих неприятностей, надо вовремя проводить химическую промывку форсунок.

Какая чистка лучше – химическая или ультразвуком? Все зависит от конструкции форсунок и пробега автомобиля. Не стоит забывать, что обещанный ресурс большинства инжекторов – это один миллиард циклов, что составляет около 120 тыс. км. Но продлевать их жизнь надо, не только периодически посещая посты очистки, но и заправляться качественным топливом.

Химическая промывка форсунок

Имеются установоки разной разной конструкции для химической промывки топливных форсунок, но принцип выполнения данной процедуры един – подсоединение аппарата к топливной рампе и работа мотора на сольвенте (жидкость для промывки), который является химическим растворителем и топливом одновременно.

Процедура занимает около двух часов – час на промывку и около часа на подключение и отключение аппарата. Для двигателей объемом до двух литров требуется один литр промывочной жидкости. При большем объеме силового агрегата необходимо больше сольвента.

При подготовке к промывке магистраль подачи топлива подключается к обратной магистрали в бензобак, но последние лет десять автомобили с такой конструкцией топливной системы не производятся и приходится отключать бензонасос, что иногда бывает сделать проблематично.

Снять электрический разъем с бензонасоса невозможно из-за его расположения под кузовом или затрудненного доступа (не на всех автомобилях заднее сиденье снимается легко и быстро). На некоторых моделях автомобилей предохранитель бензонасоса защищает еще и электрическую цепь зажигания (например, Форд фьюжен и Форд фиеста).

Снять реле включения бензонасоса, интегрированное в модуль управления электрооборудованием кузова, не представляется возможным технически, и много других “подводных камней” возникающих в зависимости от марки автомобиля. В этом случае глушится магистраль подачи, и циркуляция топлива происходит через обратный клапан в бензонасосе, что является нарушением технологии промывки.

При обслуживании форсунок дизельного двигателя без подкачивающего насоса в топливном баке, когда глушится магистраль подачи топлива, необходимо ее не “завоздушить” потому, что без специнструмента прокачать ее потом будет очень трудно, а иногда не возможно.

Нельзя забывать и о возвратной магистрали с топливных форсунок, в которой специальным клапаном поддерживается определенное давление для их корректной работы, глушить ее нельзя и оставлять подключенной к топливному фильтру тоже.

Соблюдайте правила противопожарной безопасности и не допускайте разлива промывочной жидкости.

Надо организовать сбор промывочной жидкости в отдельную емкость (если нет возможности подключения к промывочному стенду) для дальнейшего использования в процедуре промывки форсунок. Во время химической промывки происходит еще и чистка камеры сгорания, поршней и клапанов, что является плюсом, по сравнению с ультразвуковой чисткой форсунок.

Как часто промывать форсунки, зависит от многих факторов – режима эксплуатации двигателя, качества используемого топлива, отношения владельца к своему автомобилю и др. При нормальных режимах эксплуатации и приемлемом качестве топлива производители рекомендуют промывку каждые 25-30 тысяч километров пробега и делать процедуру перед заменой масла в двигателе.

Чаще всего для промывки используют очиститель форсунок для бензиновых двигателей “Лавр”, вариант которого есть и для дизельных двигателей. На его упаковке указано, что после промывки замена свечей не требуется, но лучше промывать форсунки, используя старые свечи, специально приготовленные для этого случая.

При использовании бельгийской промывочной жидкости “Винс”, замена масла и свечей обязательна.

Промывка форсунок без снятия с двигателя происходит при полностью прогретом ДВС, так как запустить холодный мотор на промывочной жидкости не получится, а что касается отечественных автомобилей, даже небольшое падение температуры во время подключения устройства для чистки форсунок сильно затрудняет запуск.

Давление подачи сольвента рекомендуется выставлять 3 бара, исключением являются старые отечественные автомобили с обратной магистралью возврата топлива, с рабочим давлением в топливной рампе 2,2 – 2,6 бар.

После 10-и минут работы мотора на холостых оборотах желательно его остановить на 10 минут для “откисания” деталей, контактирующих с промывочной жидкостью, после повторного запуска периодически повышать обороты до 2000-2500 об/мин до завершения промывки.

При использовании жидкости “Винс” – этого лучше не делать, так как сгорание сольвента “Винс” хуже, чем у жидкости “Лавр”, поэтому можно “залить” свечи со всеми вытекающими после этого проблемами для повторного запуска силового агрегата.

Ультразвуковая чистка форсунок

Во время эксплуатации форсунок на их рабочих поверхностях происходит отложение мягких и твердых фракций. При постоянном уходе за топливными инжекторами мягкие отложения смываются, а отложения твердых составов удаляются частично и постепенно накапливаются.

Установка ультразвуковой очистки форсунок полностью удаляет все виды загрязнений, возникающих во время работы инжектора. В зависимости от времени, необходимого для снятия форсунок, стоимость процедуры очистки зависит от конструкции двигателя.

Перед погружением в ультразвуковую ванну,форсунки необходимо проверить на стенде, чтобы сравнить результаты измерения производительности до и после очистки. В ультразвуковой ванне процесс очистки происходит за счет кавитации – образованию и последующему схлопыванию пузырьков газа под действием ультразвуковых волн.

Перед повторной проверкой производительности и факела распыла необходимо дать обратный ход жидкости для удаления продуктов очистки из корпуса инжектора. Для очистки и для проверки типы жидкости отличаются друг от друга. Перед установкой форсунок на двигатель подлежат замене все уплотнительные кольца.

Дизельные инжекторы с электромагнитными катушками проверяются на производительность на стенде для проверки форсунок дизельного двигателя. Производится замена распылителей с корректировкой регулировочными шайбами отклонений для необходимых параметров работы.

Для пьезофорсунки дизельных двигателей процедура ремонта и регулировки не предусмотрена.

Заключение

Правильное приготовление топливовоздушной смеси возможно только при исправных и чистых форсунках. Все описанные выше процедуры обслуживания топливных форсунок двигателя послужат увеличению их срока службы, экономии расхода топлива и избавляют владельца автомобиля от неприятных сюрпризов.

Мотор в любую погоду будет запускаться с первого раза и “ровно” работать на любых оборотах, доставляя тем самым удовольствие при езде водителю и пассажирам. Вовремя проводите техническое обслуживание системы питания инжекторного двигателя и используйте качественное топливо.

Не допускайте загрязнение инжекторной системы впрыска! Напишите в комментариях: как часто Вы обслуживаете топливные форсунки и какие методы применяете для ухода за ними? Будете в Краснодаре, приезжайте промывать инжекторную систему.

С уважением, Олег!

Понравилась статья? Поделись!

  • Вконтакте
  • Одноклассники
  • Facebook
  • Twitter

Краснодарский Ботанический сад им. И. С. Косенко: адрес, время работы, обзор с фотоАнтиблокировочная тормозная система (ABS): что это такое простыми словами

Оцените статью