Токсичность отработанных газов дизельных двигателей

Токсичное действие дизельного топлива и его отработанных газов

О токсичности самого дизтоплива

Дизельное топливо считается более токсичным, чем бензиновое, однако на человеческий организм оно оказывает не столь сильное отравляющее действие. Связано это с гораздо более низкой испаряемостью дизеля в сравнении с бензинами.

При нахождении в мелко распылённом состоянии солярка сильно раздражает слизистые оболочки организма человека.

Признаки острого отравления парами солярки:

  • Возниканет возбуждённое, эйфорическое состояние;
  • Помутняется сознание, возникает ступор;
  • Кожа покрывается холодным липким потом;
  • Нарушаются речевые функции;
  • Появляются проблемы с координацией движений и походкой.

Длительный и регулярный контакт кожи с жидким дизельным топливом служит причиной появления различных кожных заболеваний, болей и отёков. Наиболее опасны дизельные топлива с высоким содержанием серы. Чем больше в них последней, тем более серьёзным будет поражение кожи.

Наша компания реализует дизтопливо Москва цена, условия доставки и оплаты не хуже, чем у конкурентов. По сравнению с ними мы имеем целый ряд преимуществ. Об этом можно прочитать на соответствующих страницах сайта. Стоимость дизтоплива определяется рынком.

О токсичности отработавших газов дизеля

По возникновению ОГ дизельного топлива делят на:

  • Продукты неполного сгорания горючего. К таковым относятся: сажа, угарный газ, некоторые углеводороды и альдегиды.
  • Продукты окисления некоторых химических соединений дизельного топлива и воздуха. Прежде всего это оксиды азота. Присутствуют также оксиды серы.

Угарный газ

Самый известный, представляющий угрозу для жизни, компонент ОГ. Он вытесняет кислород из крови. Она теряет способность переносить этот животворный элемент и человек может погибнуть от удушья.

Даже при кратковременном, но регулярно происходящем периодическом воздействии угарного газа у человека происходит изменение состава крови. При слабых концентрациях CO в воздухе 0,01% человек чувствует головную боль, снижение своей работоспособности. При повышении количества угарного газа может развиться атеросклероз и случиться инфаркт миокарда, плюс ко всему этому – хронические лёгочные заболевания. При концентрации CO в 1% человек теряет сознание.

Оксиды азота

Самый токсичный и один из самых значительных компонентов ОГ дизеля. В обычных условиях азот совершенно инертный газ, им можно спокойно и без опасений дышать, но в камере сгорания двигателя создаются очень высокие температуры и давление. При них азот вступает с кислородом в химические реакции.

В основном образуются оксиды NO и NO2. Эти соединения оказывают крайне пагубное влияние на нервную и сердечно-сосудистую систему человеческого организма, раздражают слизистые оболочки носа и глаз.

При контакте с водой монооксид и двуокись азота образуют азотистую и азотную кислоты. Даже в слабых концентрациях они постепенно, но верно разрушают лёгочную ткань.

При контакте оксидов азота с не успевшими сгореть в солярке олефиновыми углеводородами образуются токсичные нитролефины. Они вызывают нервные расстройства и болезни дыхательных путей.

Несмотря на всё выше сказанное, без дизельного горючего во многих случаях не обойтись. Наша организация осуществляет продажу дизельного топлива с доставкой на выгодных для клиента условиях. Стоимость дизельного топлива вас не разочарует. Мы стремимся к взаимовыгодному сотрудничеству, а не нажиться на покупателе всеми доступными способами.

Устройство автомобилей

Токсичность отработавших газов двигателя

Виды токсичных веществ в отработавших газах

В современном мире автомобиль давно уже перестал быть диковинкой, и превратился из предмета роскоши в один из самых необходимых и обыденных атрибутов нашего бытия. Возможность мобильно перемещаться в окружающем мире и пространстве подняло человеческое общество на качественно новую ступень и в личностном и в коллективном развитии. Как это ни забавно звучит, но без автомобиля, а точнее будет сказать – без автомобильного транспорта, мы теперь не можем сделать и шагу.

Но интенсивное использование этого чуда техники в массовом масштабе имеет и многие негативные стороны – автомобиль является источником опасности на дорогах, источником шума и других не всегда приятных эффектов для наших органов чувств.
Однако одной из самых неприятных сторон является загрязнение окружающей среды выделениями, сопровождающими работу автомобильного двигателя и автомобиля в целом. И если с утечками нефтепродуктов (масел, различных жидкостей и топлива) из прохудившихся систем можно бороться достаточно просто, то с выбросами в атмосферу продуктов сгорания автомобильного топлива справиться очень и очень сложно.

Давно уже не тайна, что бурный рост парка автомобилей в современном мире привел к тому, что в местах их массового скопления (например, в крупных городах) они стали одной из основных причин загрязнения окружающей среды, особенно атмосферного воздуха. Дышать становится все труднее, а кроме того, выбросы интенсивно содействуют парниковому эффекту со всеми вытекающими последствиями.

В связи с этим в ряде стран мира были разработаны специальные законы и нормативные документы, ограничивающие содержание вредных веществ в отработавших газах автомобилей. Определены нормы токсичности, а также разработаны методы контроля содержания вредных веществ в выхлопных газах двигателей внутреннего сгорания (ДВС).

К основным токсичным веществам, содержащимся в отработавших газах ДВС, относятся оксид углерода (СО), несгоревшие частицы топлива или углеводороды (CmHn), сажа (С) и оксиды азота (NOx). Условия, при которых происходит образование токсичных веществ в ДВС, различны. Так, образование первой группы (СО, CmHn и С) связано с химическими реакциями окисления топлива, протекающими как в процессе смесеобразования, так и во время непосредственно сгорания топлива и выполнении двигателем рабочего хода.

Пожалуй, наименее токсичными из перечисленных вредных веществ являются механические частицы, выбрасываемые из трубы глушителя в виде сажи. Конечно, сажа способна нанести вред здоровью человека, откладываясь в дыхательных путях и легких, но с точки зрения токсичности вред, наносимый чадящей выхлопной трубой дизеля меньше, чем едва заметный сизый дымок из трубы бензинового двигателя. Да и бороться с сажей проще, чем с химически активными продуктами неполного окисления топливных компонентов.

Вторая группа веществ – окислы и оксиды азота (NOx) носит термический характер и не связана непосредственно с реакциями окисления топлива. Поэтому средства борьбы с токсичностью отработавших газов для этих двух групп веществ различны.

Причины образования токсичных веществ в отработавших газах

Основными причинами образования токсичных веществ в ДВС являются несовершенство процессов подготовки горючей смеси перед подачей в цилиндры и в цилиндрах, что приводит к неполному сгоранию топлива в двигателе, а также загрязнение топлива различными примесями и добавками.
В идеальном случае при полном сгорании углеводородного топлива в двигателе в результате этого процесса должны образовываться углекислый газ и пары воды, которые не относятся к токсичным веществам.
Но получить идеальный процесс сгорания топлива на различных режимах работы двигателя или иметь идеально чистое топливо в реальной практике эксплуатации автомобилей практически невозможно. Поэтому неприятные выбросы в атмосферу всегда сопровождают работу двигателя внутреннего сгорания.

Читайте также:  Подъемник для передней части автомобиля

Количество токсичных веществ в отработавших газах дизелей и двигателей с искровым зажиганием из-за разного характера процессов смесеобразования и сгорания топлива имеет существенные различия. В отработавших газах дизелей в больших количествах содержатся сажа и оксиды азота, а двигателей с искровым зажиганием — оксид углерода и углеводороды. Поэтому средства борьбы с токсичностью у этих типов двигателей отличаются.

Нормативные документы по токсичным веществам в отработавших газах

В России нормы содержания токсичных веществ в отработавших газах дизелей и методы их измерения установлены ГОСТ Р 52160-2003.
Нормы содержания токсичных веществ в отработавших газах двигателей с искровым зажиганием и методы их измерения установлены ГОСТ Р 52033-2003 «Автомобили с бензиновыми двигателями. Выбросы загрязняющих веществ с отработавшими газами. Нормы и методы контроля при оценке технического состояния».

Определение токсичности отработавших газов двигателя осуществляется на специальных диагностических стендах или с помощью портативных газоанализаторов (ГАИ-1 и аналогичных).
Принцип действия газоанализатора ГАИ-1 основан на оптико-абсорбционном методе, т. е. на измерении поглощения энергии излучения инфракрасного диапазона анализируемым компонентом газа (оксидом углерода или углеводородами), в результате которого он нагревается до некоторой температуры, зависящей от его концентрации в отработавших газах.
Температурные колебания с помощью датчика формируют электрический сигнал, который преобразуется в показание прибора, показывающего содержание вредных веществ в газовой смеси.

Выхлопные газы автомобилей: состав

Примерный состав выхлопных газов карбюраторных и дизельных двигателей, об. %

Компонент Карбюраторные двигатели Дизельные двигатели
Азот 74–77 76–78
Кислород 0,3–8,0 2–18
Пары воды 3,0–5,5 0,5–4,0
Диоксид углерода 5,0–12,0 1,0–10,0
Оксид углерода 0,5–12,0 0,01–0,5
Оксиды азота 0,0–0,8 0,0002–0,5
Углеводороды неканцерогенные 0,2–3,0 0,009–0,5
Альдегиды 0,0–0,2 0,001–0,009
Сажа 0,0–0,4 г/м3 0,01–1,1 г/м3
Бенз(а)пирен До 10–20 мкг/м3 До 10 мкг/м3

Диоксид серы образуется в отработавших газах в том случае, когда сера содержится в исходном топливе (дизельное топливо). Анализ данных, приведенных в табл. 16, показывает, что наибольшей токсичностью обладает выхлоп карбюраторных ДВС за счет большего выброса СО, NOx, CnHm и др. Дизельные ДВС выбрасывают в больших количествах сажу, которая в чистом виде нетоксична. Однако частицы сажи, обладая высокой адсорбционной способностью, несут на своей поверхности частицы токсичных веществ, в том числе и канцерогенных. Сажа может длительное время находиться во взвешенном состоянии в воздухе, увеличивая тем самым время воздействия токсических веществ на человека.

Применение этилированного бензина, имеющего в своем составе соединения свинца, вызывает загрязнение атмосферного воздуха весьма токсичными соединениями свинца. Около 70% свинца, добавленного к бензину с этиловой жидкостью, попадает в атмосферу с отработавшими газами, из них 30% оседает на земле сразу за срезом выпускной трубы автомобиля, 40% остается в атмосфере. Один грузовой автомобиль средней грузоподъемности выделяет 2,5–3 кг свинца в год. Концентрация свинца в воздухе зависит от содержания его в бензине. Исключить поступление высокотоксичных соединений свинца в атмосферу можно заменой этилированного бензина на неэтилированный, что используют в Российской Федерации и ряде стран Западной Европы.

В дизельных двигателях с уменьшением нагрузки состав горючей смеси обедняется, поэтому содержание токсичных компонентов в отработавших газах при малой нагрузке уменьшается (рис. 77, б). Содержание СО и СnНm возрастает при работе на режиме максимальной нагрузки.

Количество вредных веществ, поступающих в атмосферу в составе отработавших газов, зависит от общего технического состояния автомобилей и особенно от двигателя – источника наибольшего загрязнения. Так, при нарушении регулировки карбюратора выбросы СО увеличиваются в 4–5 раз.

В процессе старения двигателя выбросы его увеличиваются из-за ухудшения всех характеристик. При износе поршневых колец увеличивается прорыв через них. Утечки через выхлопной клапан могут стать основным источником выбросов углеводородов.

Характеристики режима работы и конструкции, которые оказывают влияние на выбросы в карбюраторных двигателях, включают следующие параметры:

1) коэффициент избытка воздуха;

2) нагрузка или уровень мощности;

4) управление моментом;

5) образование нагара в камере сгорания;

6) температура поверхности;

7) противодавление выхлопа;

8) перекрытие клапанов;

9) давление во впускном трубопроводе;

10) соотношение между поверхностью и объемом;

11) рабочий объем цилиндра;

12) степень сжатия;

13) рециркуляция выхлопного газа;

14) конструкция камеры сгорания;

15) соотношение между ходом поршня и диаметром цилиндра.

Уменьшение количества выбрасываемых загрязняющих веществ достигается в современных автомобилях за счет использования оптимальных конструкторских решений, точной регулировки всех элементов двигателя, выбором оптимальных режимов движения, использованием топлива более высокого качества. Управление режимами движения автомобиля может осуществляться с помощью компьютера, устанавливаемого в салоне автомобиля.

Эксплуатационные и конструкторские параметры, влияющие на выбросы двигателей, в которых зажигание смеси происходит за счет сжатия, включают следующие характеристики:

1) коэффициент избытка воздуха;

2) опережение впрыска;

3) температура входящего воздуха;

4) состав топлива (включая присадки);

6) завихрение воздуха;

7) конструкция камеры сгорания;

8) характеристики форсунки и струи;

9) рециркуляция выхлопного газа;

10) система вентиляции картера.

Турбонаддув увеличивает температуру цикла и, таким образом, усиливает окислительные реакции. Эти факторы приводят к сокращению выбросов углеводородов. Чтобы уменьшить температуру цикла и таким образом сократить выброс оксидов азота, совместно с турбонаддувом может быть использовано промежуточное охлаждение.

Одним из наиболее перспективных направлений снижения выбросов токсичных веществ карбюраторных двигателей является использование методов внешнего подавления выбросов, т.е. после того, как они выйдут из камеры сгорания. К таким устройствам относятся термические и каталитические реакторы.

Цель использования термических реакторов состоит в том, чтобы доокислить углеводороды и оксид углерода посредством некаталитических гомогенных газовых реакций. Эти устройства предназначены для окисления, поэтому они не приводят к удалению оксидов азота. Такие реакторы поддерживают повышенную температуру выхлопных газов (до 900°С) в течение периода времени доокисления (в среднем до 100 мс), так что окислительные реакции продолжаются в выхлопных газах и после того, как они покинут цилиндр.

Каталитические реакторы устанавливаются в выхлопной системе, которая часто несколько удалена от двигателя и, в зависимости от конструкции, используется для удаления не только углеводородов и СО, но, кроме того, и оксидов азота. Для автомобильных транспортных средств используются такие катализаторы, как платина и палладий, для окисления углеводородов и СО. Для уменьшения содержания оксидов азота в качестве катализатора используется родий. Как правило, используется всего 2–4 г благородных металлов. Основные металлические катализаторы могут быть эффективными при использовании спиртовых топлив, но их каталитическая активность быстро падает при использовании традиционных углеводородных топлив. Применяются два вида носителей катализаторов: таблетки (γ-оксид алюминия) или монолиты (кордиерит или коррозионно-стойкая сталь). Кордиерит при применении его в качестве носителя покрывают γ-оксидом алюминия перед нанесением каталитического металла.

Каталитические нейтрализаторы конструктивно состоят из входного и выходного устройств, служащих для подвода и вывода нейтрализуемого газа, корпуса и заключенного в него реактора, представляющего собой активную зону, где и протекают каталитические реакции. Реактор-нейтрализатор работает в условиях больших температурных перепадов, вибрационных нагрузок, агрессивной среды. Обеспечивая эффективную очистку отработанных газов, нейтрализатор по надежности не должен уступать основным узлам и агрегатам двигателя.

Читайте также:  Лодочный мотор сузуки замена крыльчатки

Нейтрализатор для дизельного двигателя показан на рис. 78. Конструкция нейтрализатора осесимметрична и имеет вид «трубы в трубе». Реактор состоит из наружной и внутренней перфорированных решеток, между которыми размещен слой гранулированного платинового катализатора.

Назначение нейтрализатора заключается в глубоком (не менее 90 об %) окислении СО и углеводородов в широком интервале температур (250…800°С) в присутствии влаги, соединений серы и свинца. Катализаторы этого типа характеризуются низкими температурами начала эффективной работы, высокой термостойкостью, долговечностью и способностью устойчиво работать при высоких скоростях газового потока. Основным недостатком нейтрализатора этого типа является высокая стоимость.

Крайне нежелательным промежуточным продуктом может оказаться серная кислота. Для почти стехиометрической смеси сосуществуют как окисляющиеся, так и восстанавливающиеся составляющие в выхлопных газах.

Эффективность катализаторов может быть снижена в присутствии соединений металлов, которые могут поступать в выхлопные газы из топлива, добавок смазывающих материалов, а также вследствие износа металлов. Это явление известно под названием отравления катализатора. Особенно существенно понижают активность катализатора антидетонационные добавки тетраэтилсвинца.

Кроме каталитических и термических нейтрализаторов отработанных газов двигателей используются и жидкостные нейтрализаторы. Принцип действия жидкостных нейтрализаторов основан на растворении или химическом взаимодействии токсичных компонентов газов при пропускании их через жидкость определенного состава: вода, водный раствор сульфита натрия, водный раствор бикарбоната натрия. В результате пропускания отработанных газов дизельного двигателя снижается выброс альдегидов примерно на 50%, сажи – на 60–80%, происходит некоторое снижение содержания бенз(а)пирена. Главные недостатки жидкостных нейтрализаторов – это большие габариты и недостаточно высокая степень очистки по большинству компонентов выхлопных газов.

Повышение экономичности автобусов и грузовых автомобилей достигается прежде всего применением дизельных ДВС. Они обладают экологическими преимуществами по сравнению с бензиновыми ДВС, поскольку имеют меньший на 25–30% удельный расход топлива; кроме того, состав отработавших газов у дизельного ДВС менее токсичен.

Для оценки загрязнения атмосферного воздуха выбросами автотранспорта установлены удельные значения газовых выбросов. Имеются методики, позволяющие по удельным выбросам и количеству автомобилей рассчитать количество выбросов автотранспорта в атмосферу для различных ситуаций [3].

Состав выхлопных газов автомобилей

Образование токсичных веществ – продуктов неполного сгорания и окислов азота в цилиндре двигателя в процессе сгорания происходит принципиально различными путями. Первая группа токсичных веществ связана с химическими реакциями окисления топлива, протекающими как в предпламенный период, так и в процессе сгорания – расширения. Вторая группа токсичных веществ образуется при соединении азота и избыточного кислорода в продуктах сгорания.

Реакция образования окислов азота носит термический характер и не связана непосредственно с реакциями окисления топлива.

Поэтому рассмотрение механизма образования данных токсичных веществ целесообразно вести раздельно.

К основным токсичным выбросам автомобиля относятся: отработавшие газы (ОГ), картерные газы и топливные испарения. Отработавшие газы, выбрасываемые двигателем, содержат окись углерода (СО), углеводороды (СХ HY ), окислы азота (NOX ), альдегиды и сажу. Картерные газы – это смесь части отработавших газов, проникшей через неплотности поршневых колец в картер двигателя, с парами моторного масла.

Топливные испарения поступают в окружающую среду из системы питания двигателя: стыков, шлангов и т.д. Распределение основных компонентов выбросов у карбюраторного двигателя следующее: отработавшие газы содержат 95% СО, 55% СХ HY и 98% NOX, картерные газы по – 5% СХ HY, 2% NOX, а топливные испарения – до 40% СХ HY.

В общем случае в составе отработавших газов двигателей могут содержаться следующие нетоксичные и токсичные компоненты: О, О2, О3, С, СО, СО2, СН4, Cn Hm, Cn Hm О, NO, NO2, N, N2, NH3, HNO3, HCN, H, H2, OH, H2 O.

Вредные токсичные выбросы можно разделить на регламентированные и нерегламентированные.

Они действуют на организм человека по-разному. Вредные токсичные выбросы: СО, NOX, CX HY, RX CHO, SO2, сажа, дым. СО (оксид углерода) – этот газ без цвета и запаха, более легкий, чем воздух. Образуется на поверхности поршня и на стенке цилиндра, в котором активация не происходит вследствие интенсивного теплоотвода стенки, плохого распыления топлива и диссоциации СО2 на СО и О2 при высоких температурах.

NOX (оксиды азота) – самый токсичный газ из ОГ.

N – инертный газ при нормальных условиях.

Активно реагирует с кислородом при высоких температурах.

Выброс с ОГ зависит от температуры среды. Чем больше нагрузка двигателя, тем выше температура в камере сгорания, и соответственно увеличивается выброс оксидов азота.

Гидроводороды (Сx Нy ) – этан, метан, бензол, ацетилен и др.

токсичные элементы. ОГ содержат около 200 разных гидроводородов.

В дизельных двигателях Сx Нy образуются в камере сгорания из-за гетерогенной смеси, т.е. пламя гаснет в очень богатой смеси, где не хватает воздуха за счет неправильной турбулентности, низкой температуры, плохого распыления.

ДВС выбрасывает большее количество Сx Нy, когда работает в режиме холостого хода, за счет плохой турбулентности и уменьшения скорости сгорания.

Дым – непрозрачный газ.

Дым может быть белым, синим, черным. Цвет зависит от состояния ОГ.

Белый и синий дым – это смесь капли топлива с микроскопическим количеством пара; образуется из-за неполного сгорания и последующей конденсации.

Белый дым образуется, когда двигатель находится в холодном состоянии, а потом исчезает из-за нагрева. Отличие белого дыма от синего определяется размером капли: если диаметр капли больше длины волны синего цвета, то глаз воспринимает дым как белый.

Синий дым бывает от масла.

Наличие дыма показывает, что температура недостаточна для полного сгорания топлива. Черный дым состоит из сажи. Дым отрицательно влияет на организм человека, животных и растительность.

Сажа – представляет собой бесформенное тело без кристаллической решетки; в ОГ дизельного двигателя сажа состоит из неопределенных частице с размерами 0,3…100 мкм.

Причина образования сажи заключается в том, что энергетические условия в цилиндре дизельного двигателя оказываются достаточными, чтобы молекула топлива разрушилась полностью. Более легкие атомы водорода диффундируют в богатый кислородом слой, вступают с ним в реакцию и как бы изолируют углеводородные атомы от контакта с кислородом. Образование сажи зависит от температуры, давления в камере сгорания, типа топлива, отношения топливо-воздух.

SO2 (оксид серы) – образуется во время работы двигателя из топлива, получаемого из сернистой нефти (особенно в дизелях); эти выбросы раздражают глаза, органы дыхания.

SO2,H2 S – очень опасны для растительности.

Главным загрязнителем атмосферного воздуха свинцом в Российской Федерации в настоящее время является автотранспорт, использующий этилированный бензин: от 70 до 87% общей эмиссии свинца по различным оценкам. РЬО (оксиды свинца) – возникают в ОГ карбюраторных двигателей, когда используется этилированный бензин.

Читайте также:  Чип тюнинг мта провинция

При сжигании одной тонны этилированного бензина в атмосферу выбрасывается приблизительно 0,5… 0,85 кг оксидов свинца. По предварительным данным, проблема загрязнения окружающей среды свинцом от выбросов автотранспорта становится значимой в городах с населением свыше 100 000 человек и для локальных участков вдоль автотрасс с интенсивным движением.

Радикальный метод борьбы с загрязнением окружающей среды свинцом выбросами автомобильного транспорта – отказ от использования этилированных бензинов.

Альдегиды (Rx CHO) – образуются, когда топливо сжигается при низких температурах или смесь очень бедная, а также из-за окисления тонкого слоя масла в стенке цилиндра.

При сжигании топлива при высоких температурах эти альдегиды исчезают.

Загрязнение воздуха идет по трем каналам: 1)ОГ, выбрасываемые через выхлопную трубу (65%); 2)картерные газы (20%); 3)углеводороды в результате испарения топлива из бака, карбюратора и трубопроводов (15%).

Производство индивидуальных ароматических углеводородов (бензола и толуола).

Данное производство осуществляют на установке Л Г-35-8/ЗООБ, сырьем которой служит фракция 62-105°С.

В отличие от установки каталитического риформинга, работающей на по­лучение высокооктановых компонентов автобензина, это производство имеет в своем составе дополнительные блоки, имеющие специфическое назначение: блок селективного гидрирования непредельных углеводо­родов (догидрирования), блок экстракции с регенерацией растворителя и блок ректификации экстракта на индивидуальные ароматические угле­водороды.

Селективное гидрирование непредельных углеводородов.

В составе уста­новки ароматизации имеется отдельный блок, основной частью которо­го является реактор догидрирования, заполненный алюмоплатиновым катализатором с низким содержанием платины АН-10, АП-15 или ГО-1. Назначение этого блока — гидрирование непредельных углеводородов в составе ароматизированного катализата (обычно до 1,5%). Температура гидрирования 180-22СГС, объемная скорость 5-7 ч

’, давление 1,4-2,0 МПа. При нормальной работе блока гидрируются только олефино-вые углеводороды, концентрация ароматических углеводородов в катализате остается неизменной.

При этом разность температуры на входе в реактор и выходе из него не должна превышать 6- !0°С, в противном слу­чае это будет свидетельствовать о снижении селективности гидрирова­ния. Обычно это наблюдается в конце цикла работы катализатора. Характеристика катализаторов селективного гидрирования приведена в табл.

Таблица Характеристика катализаторов селективного гидрирования

Показатели Катализаторы
АП-10 АП-15 ГО-1
Массовая доля компонентов катализатора платина 0.10+0,01 0,15 ±0.01 0,10 ±0,01
рений 0,25 ±0,005
кадмии 0,01 ±0,002
Насыпная плотность, г/см 0,64 +0,4 0,64 +0,4 0.63 ±0,05
Коэффициент прочности (средний), кг/мм, не менее 0,97
Размер таблеток, мм: диаметр 2, 8 ±0.2
длина 5 ±2
Каталитические свойства: активность — бромное число гидрированного катализата, г брома на 100 см’ продукта, не более 0,1
селективность— абсолютная разность между массовой долей ароматических углево­дородов в сырье и в продукте.

Свойства выхлопных газов

Многие владельцы дизельных автомобилей, генераторов, котлов беспокоятся о выхлопных газах.

И не напрасно, ведь хорошо известно, что выхлопные газы токсичны. Главный вопрос, который они задают: — Каково поведение выхлопных газов и как скоро они улетучатся сами по себе? Постараемся ответить на эти вопросы…

Начнем с того, что выхлопные газы современных двигателей внутреннего сгорания, к которым относятся так же и дизельные двигатели, вовсе не один газ, а смесь газов. Каждый из них обладает определенными свойствами, которые определяют не только токсичность, но и летучесть.

Летучесть – это свойство газа подниматься в атмосфере вверх или опускаться вниз.

Летучесть зависит от плотности газа. Если он плотнее воздуха – газ опускается, наоборот – поднимается.

Выхлопной коктейль состоит из более чем 200 компонентов.

Вот только основные:

  • Азот (N) – доля в выхлопе около 77%. Не токсичен.
  • Кислород (О2) – доля в выхлопе 2-15%. Не токсичен.
  • Пары воды (H2O) – доля в выхлопе около 3%. Не токсичны.

Эти газы, абсолютно безобидны и являются компонентами атмосферного воздуха, который используется в дизельных двигателях для образования топливной смеси.

Из-за того, что эти газы химически и физически весьма стабильны, они не претерпевают каких-либо изменений.

  • Углекислый газ (СО2) – доля в выхлопе около 5%. Не токсичен, является продуктом сгорания топлива. Он полезен для роста растений, однако оказывает негативное влияние на атмосферу Земли, повышая ее температуру.
    Плотность углекислого газа – 1,97 кг/м3.

Он тяжелее воздуха, следовательно, не поднимается вверх, а наоборот скапливается в подвалах, канавах, углублениях.

  • Угарный газ (СО) – доля в выхлопе около 2%. Очень токсичен. Опасен тем, что не имеет цвета и запаха. Угарный газ воздействует на нервную и сердечно сосудистую систему человека, вызывая кислородное голодание, сонливость, обмороки, удушье, смерть.
    Плотность угарного газа – 1,15 кг/м3.

Он чуть легче воздуха, следовательно, поднимается вверх, медленно скапливаясь в мансардах, под крышами домов.

  • Оксид азота (NO2) – доля в выхлопе около 0,5%. Очень токсичен. Представляет собой газ бурого цвета с характерным запахом.
    При контакте NO2 с влагой (слизистые оболочки глаз, носа, бронхов) образуется азотная кислота, поражающая легкие человека. При высоких концентрациях NO2 возникают астма и отек легких.
    NO2 опасен тем, что вдыхая его в достаточно высоких концентрациях, человек не имеет неприятных ощущений и не предполагает опасности отравления.При длительном воздействии NO2, у человека развивается хронический бронхит, гастрит, язва желудка, сердечная недостаточность, нервные расстройства.
    Плотность оксида азота – 2,05 кг/м3. Он тяжелее воздуха, следовательно, опускается вниз, скапливаясь в подвалах, канавах, углублениях.
  • Углеводороды (CxHx) – доля в выхлопе около 0,2%. Токсичны. Даже в малых концентрациях вызывают головную боль, головокружение, обмороки. Они оказывают неблагоприятное воздействие на сердечно сосудистую систему человека.Углеводородные соединения обладают также канцерогенным действием. Канцерогены — это вещества, способствующие возникновению и развитию раковых заболеваний.Особой канцерогенной активностью отличается ароматический углеводород бензапирен С20H12, который хорошо растворяется в маслах, жирах, сыворотке человеческой крови. Накапливаясь в организме человека до опасных концентраций, бензапирен стимулирует образование злокачественных опухолей.

CxHx легче воздуха, следовательно, поднимаются вверх, скапливаясь в мансардных помещениях, под крышами домов, сараев.

  • Альдегиды (R-CHO) – доля в выхлопе около 0,005%. Токсичны. Вызывают раздражение слизистой оболочки дыхательных путей, глаз и т. д. Способны накапливаться в организме, приводя к хроническим заболеваниям.
    Альдегиды тяжелее воздуха, следовательно, опускаются вниз, скапливаясь в подвалах, канавах, углублениях.
  • Сернистый ангидрид (SO2) – доля в выхлопе около 0,05%. Токсичен. При взаимодействии с водой образует серную кислоту. Пагубно воздействует на слизистые оболочки дыхательных путей, глаз. Обладает резким, неприятным запахом.
    Плотность SO2 – 2,63 кг/м3. Он тяжелее воздуха, следовательно, опускается вниз, скапливаясь в подвалах, канавах, углублениях.
  • Вот такая картина. Кроме того, следует учесть, что время жизни некоторых ядовитых компонентов до 5 лет. Накапливаясь где-то в подвалах жилых построек, гаражах эти газы вряд ли «уйдут» сами, как надеются многие владельцы дизельной техники. Они скорее отравят всё живое…

    Отсюда вытекают основные правила безопасности:

    • Не стоять рядом с прогреваемым автомобилем.
    • Прогревать автотранспорт желательно на открытой и продуваемой местности, а не у стены, и уж тем более, не в гараже!
    Оцените статью