Тиристорный пускатель для асинхронного двигателя схема

Тиристорные пускатели

Тиристорные пускатели являются бесконтактными аппаратами и служат для включения и выключения электромеханических систем. В каждой фазе пускателя (рис. 1) включены незапирающиеся тиристоры VS1 — VS3 и диоды VD1 — VD3.

Тиристоры открываются один раз в течение периода последовательно через промежутки времени Т/3, в моменты времени, когда подается импульс на открывание тиристора, при прохождении напряжения через нуль в сторону увеличения его в проводящем направлении.

После того как напряжение достигнет нулевого значения, тиристор становится непроводящим и напряжение данной фазы подается через параллельный диод. По истечении одной трети периода включается следующий тиристор и т. д. Этим обеспечивается непрерывная подача энергии приемнику, например асинхронному двигателю МА (рис. 1). Отметим, что в приводе отсутствуют контактные устройства, имеются только кнопки «Пуск» и «Стоп».

Рис. 1. Тиристорный пускатель

Импульсы на открывание тиристоров подаются на зажимы 1, 2, 3, 4, 5, 6 формирователя импульсов, который питается от отдельного трансформатора Т через диоды VD4, VD5 и VD6, чем обеспечивается подача импульсов одной полярности. При нажатии кнопки «Пуск» включаются формирователь импульсов и пускатель.

Защита двигателя обеспечивается при помощи предохранителей F и схемы защиты от недопустимых токов. В каждой фазе пускателя включены трансформаторы тока. Токи трех фаз суммируются и преобразуются в напряжение. При установленном значении напряжения, если оно действует не кратковременно, снимаются открывающие импульсы и привод останавливается. При нажатии кнопки «Стоп» также прекращается подача импульсов.

Формирователь импульсов тиристорного пускателя

Для управления тиристорами, т. е. для формирования в соответствующие моменты времени управляющих импульсов, могут применяться различные устройства: электромагнитные с магнитными усилителями и трансформаторами, маломощные тиристорные устройства, транзисторные устройства и др. Наибольшее распространение получили транзисторные схемы, одна из которых будет рассмотрена.

Управление может производиться по горизонтальному или вертикальному принципу. При горизонтальном управлении напряжение переменного тока может сдвигаться по фазе («горизонтально») при помощи фазовращателя, обычно в пределах угла от 0 до π.

Полученные от фазовращателей напряжения, например для мостового трехфазного выпрямителя шесть напряжений, сдвинутых по фазе на углы π/3, подаются на формирователь, выдающий управляющие импульсы достаточной длительности.

Больше распространен вертикальный принцип управления, при котором управляющий импульс формируется, например, в моменты равенства управляющего напряжения линейно возрастающему пилообразному напряжению.

Подобная схема для одного канала управления двухполупериодного выпрямителя дана на рис. 2, а. На вход поступает переменное напряжение, сформированное в виде прямоугольных импульсов, имеющих ширину π (рис. 2,б).

Рис. 2. Формирователь импульсов тиристорного пускателя: a — схема получения управляющих импульсов, б — временные диаграммы напряжений в узлах схемы

Отрицательное напряжение подается через диод VD1 на базу транзистора VT1 в течение проводящей части периода. В эти отрезки времени напряжение ur4С1 относительно невелико. После того как снимается отрицательное напряжение с базы транзистора VT1 начинает возрастать напряжение ur4С1 практически линейно при больших сопротивлениях г2 и г4.

Когда это возрастающее напряжение ur4 С1 станет равным управляющему напряжению Uy, появляется напряжение на выходе транзистора VT2. При дифференцировании импульса тока в цепи транзистора VT2 формируется импульс напряжения u вых в цепи управления тиристора.

Читайте также:  Коэффициент износа автомобиля осаго калькулятор

В представленной схеме (рис. 2 , а) диод VD4 служит для ограничения отрицательного напряжения, подаваемого на базу транзистора VT2, диод VD3 препятствует замыканию источника управляющего напряжения через разряженный конденсатор С1 или насыщенный транзистор VT1, а диод VD5 ограничивает значение выходного импульса.

Тиристорные пускатели электродвигателей

Сочетание малого коэффициента мощности двигателя и большого угла задержки включения при использовании тиристорных пускателей приво-

Хотя в асинхронных двигателях коэффициент мощности при включении и имеет обычно небольшую величину, формы токов и напряжений в них при использовании тиристорных пускателей подобны приведенным на Рис. 10.8 и Рис. 10.9. При прямом включении асинхронного двигателя в сеть в начальный момент ток через него оказывается в 5—6 раз больше, чем даже при максимальной нагрузке. Этот бросок тока способен вызвать «проседание» напряжения в цепи питания двигателя, и, если к ней подключено еще какое-либо оборудование, может произойти нарушение его работы. Даже лампы накаливания на секунду-другую могут потухнуть. Тиристорные пускатели способствуют уменьшению этих неприятностей, но ценой снижения начального момента вращения двигателя. Момент вращения пропорционален квадрату тока через двигатель, так что снижение этого тока на 50% от номинального значения приведет к снижению вращающего момента в 4 раза. Однако множество механизмов, например вентиляторов и насосов, способны стартовать и при пониженном вращающем моменте. Если исключить потери на трение, они требуют увеличения вращающего момента пропорционально квадрату скорости вращения.

Рис. 10.9. Графики напряжений и тока одной фазы в схеме трехфазного ключа при угле задержки включения 120°и коэффициенте мощности 0.8

дит к большому падению напряжения питания. Более того, содержание гармоник в потребляемом из сети токе может превысить допустимые пределы. Одним решением для обеих этих проблем является использование конденсаторов для коррекции коэффициента мощности. Их подключают к одному или нескольким последовательно включенным в шины питания дросселям. При этом не только повышается коэффициент мощности, но и фильтруются гармоники потребляемого тока. Для поддержания напряжения питания в приемлемых пределах эти конденсаторы делают коммутируемыми. Если емкости конденсаторов достаточно для обеспечения нужного напряжения питания при пусковом токе, то при нормальной работе двигателя во избежание чрезмерного повышения напряжения питания эти конденсаторы должны быть отключены.

Тиристорные пускатели обычно работают при токе, минимально достаточном для получения требуемого момента вращения. Достоинство этих стартеров состоит в возможности плавного увеличения тока до требуемого значения, что исключает резкие броски тока и «проседание» напряжения в питающей сети. Незначительное плавное снижение яркости свечения ламп накаливания, включенных в цепь питания электродвигателя, намного менее заметно, чем внезапное их погасание.

На Рис. 10.10 приведены пусковые характеристики асинхронного двигателя для привода центрифуги мощностью 2500 л. с. Ток линейно увеличивается от нуля до 400% от номинального значения за время 20 с. Вал двигателя начинает вращаться при токе около 350% и затем начинает ускоряться. Кривая 4 на Рис. 10.10 отображает «чистый» момент вращения, идущий на ускорение и равный разнице между развиваемым мотором моментом вращения и моментом вращения, отбираемым нагрузкой.

На Рис. 10.11 приведены графики изменения тока и скорости при пуске этого двигателя.

Читайте также:  Почему при сбросе газа глохнет двигатель

Вопреки здравому смыслу при использовании уменьшенного пускового тока мотор подвергается большим температурным воздействиям, чем при прямом включении его в сеть. Интеграл frdt оказывается больше из-за увеличенного времени выхода на рабочий режим, хотя ток и меньше. Это значение необходимо сравнить с пределом, указываемым производителем. При этом следует проявлять осторожность, так как до тех пор, пока вал двигателя не начнет вращаться, существенного отвода тепла от двигателя не происходит.

Тиристорные стартеры не только исключают броски тока в питающей сети. Еще одно их достоинство состоит в исключении ударных нагрузок на вал и на связанное с ним оборудование при включении с плавно нарастающим током. Программное управление током мотора способно обеспечить практически постоянное значение момента вращения, передаваемого на нагрузку в процессе выхода мотора на рабочий режим, что является важ-

2 — Вращающий моментдвигателя

3 — Вращающий моментнагрузки

4 — Вращающий момент, идущий

на ускорение вращения

Рис. 10.10. Пусковые характеристики асинхронного двигателя для центробежного насоса мощностью2500л. c., конструкция С по классификации Nema, напряжепие питания 4160 В

Рис. 10.11. Графики изменения тока и скорости при пуске двигателя

ным требованием при использовании в качестве нагрузки центрифуг и другого подобного оборудования. Как вариант, программа может обеспечить и постоянное ускорение, т. e. линейную зависимость скорости вращения вала от времени при запуске.

Источник: Сукер К. Силовая электроника. Руководство разработчика. — М.: Издательский дом «Додэка-ХХI, 2008. — 252 c.: ил. (Серия «Силовая электроника»).

Бесконтактные тиристорные контакторы и пускатели

Коммутация тока в цепи электромагнитными пускателями, контакторами, реле, аппаратами ручного управления (рубильниками, пакетными выключателями, переключателями, кнопками и т. д.) осуществляется изменением в широких пределах электрического сопротивления коммутирующего органа. В контактных аппаратах таким органом является межконтактный промежуток. Его сопротивление при замкнутых контактах очень мало, при разомкнутых может быть очень высоким. В режиме коммутации цепи происходит очень быстрое скачкообразное изменение сопротивления меж контактного промежутка от минимальных до максимальных предельных значений (отключение), или наоборот (включение).

Бесконтактными электрическими аппаратами называют устройства, предназначенные для включения и отключения (коммутации) электрических цепей без физического разрыва самой цепи. Основой для построения бесконтактных аппаратов служат различные элементы с нелинейным электрическим сопротивлением, величина которого изменяется в достаточно широких пределах, в настоящее время это — тиристоры и транзисторы, раньше использовались магнитные усилители.

Достоинства и недостатки бесконтактных аппаратов по сравнению с обычными пускателями и контакторами

По сравнению с контактными аппаратами бесконтактные имеют преимущества:

— не образуется электрическая дуга, оказывающая разрушительное воздействие на детали аппарата; время срабатывания может достигать небольших величин, поэтому они допускают большую частоту срабатываний (сотни тысяч срабатываний в час),

— не изнашиваются механически,

В то же время, у бесконтактных аппаратов есть и недостатки:

— они не обеспечивают гальваническую развязку в цепи и не создают видимого разрыва в ней, что важно с точки зрения техники безопасности;

— глубина коммутации на несколько порядков меньше контактных аппаратов,

— габариты, вес и стоимость на сопоставимые технические параметры выше.

Бесконтактные аппараты, построенные на полупроводниковых элементах, весьма чувствительны к перенапряжениям и сверхтокам. Чем больше номинальный ток элемента, тем ниже обратное напряжение, которое способен выдержать этот элемент в непроводящем состоянии. Для элементов, рассчитанных на токи в сотни ампер, это напряжение измеряется несколькими сотнями вольт.

Читайте также:  Инструкция по ремонту двигателя газ 406

Возможности контактных аппаратов в этом отношении неограниченны: воздушный промежуток между контактами протяженностью 1 см способен выдержать напряжение до 30 000 В. Полупроводниковые элементы допускают лишь кратковременную перегрузку током: в течение десятых долей секунды по ним может протекать ток порядка десятикратного по отношению к номинальному. Контактные аппараты способны выдерживать стократные перегрузки током в течение указанных отрезков времени.

Падение напряжения на полупроводниковом элементе в проводящем состоянии при номинальном токе примерно в 50 раз больше, чем в обычных контактах. Это определяет большие тепловые потери в полупроводниковом элементе в режиме длительного тока и необходимость в специальных охлаждающих устройствах.

Все это говорит о том, что вопрос о выборе контактного или бесконтактного аппарата определяется заданными условиями работы. При небольших коммутируемых токах и невысоких напряжениях использование бесконтактных аппаратов может оказаться более, целесообразным, чем контактных.

Бесконтактные аппараты нельзя заменить контактными в условиях большой частоты срабатываний и большого быстродействия.

Безусловно, бесконтактные аппараты даже при больших токах предпочтительны, когда требуется обеспечить усилительный режим управления цепью. Но в настоящее время контактные аппараты имеют оределенные преимущества перед бесконтактными, если при относительно больших токах и напряжениях требуется обеспечивать коммутационный режим, т. е. простое отключение и включение цепей с током при небольшой частоте срабатываний аппарата.

Существенным недостатком элементов электромагнитной аппаратуры, коммутирующих электрические цепи, является низкая надежность контактов. Коммутация больших значений тока связана с возникновением электрической дуги между контактами в момент размыкания, которая вызывает их нагрев, оплавление и, как следствие, выход аппарата из строя.

В установках с частым включением и отключением силовых цепей ненадежная работа контактов коммутирующих аппаратов отрицательно сказывается на работоспособности и производительности всей установки. Бесконтактные электрические коммутирующие аппараты лишены указанных недостатков.

Тиристорный однополюсный контактор

Для включения контактора и подачи напряжения на нагрузку должны замкнуться контакты К в цепи управления тиристоров VS1 и VS2. Если в этот момент на зажиме 1 положительный потенциал (положительная полуволна синусоиды переменного тока), то на управляющий электрод тиристора VS1 будет подано через резистор R1 и диод VD1 положительное напряжение. Тиристор VS1 откроется, и через нагрузку Rн пойдет ток. При смене полярности напряжения сети откроется тиристор VS2, таким образом, нагрузка будет подключена к сети переменного тока. При отключении контактами К размыкаются цепи управляющих электродов, тиристоры закрываются и нагрузка отключается от сети.

Схема электрическая однополюсного контактора

Бесконтактные тиристорные пускатели

Для включения, отключения, реверсирования в схемах управления асинхронными электродвигателями разработаны тиристорные трехполюсные пускатели серии ПТ. Пускатель трехполюсного исполнения в схеме имеет шесть тиристоров VS1, …, VS6, включенных по два тиристора на каждый полюс. Включение пускателя осуществляется посредством кнопок управления SB1 «Пуск» и SB2 «Стоп».

Бесконтактный трехполюсный пускатель на тиристорах серии ПТ

Схема тиристорного пускателя предусматривает защиту электродвигателя от перегрузки, для этого в силовую часть схемы установлены трансформаторы тока ТА1 и ТА2, вторичные обмотки которых включены в блок управления тиристорами.

Оцените статью