- Физика. 10 класс
- Тепловые двигатели
- Расширение и работа газа
- Четыре вида тепловых двигателей
- Превращение энергии в тепловом двигателе
- Двигатель внутреннего сгорания (ДВС)
- Как устроен одноцилиндровый ДВС
- Что такое мертвая точка и ход поршня
- Что происходит внутри цилиндра при работе ДВС
- Этапы работы четырехтактного ДВС
- Первый такт – впрыск топлива
- Второй такт – сжатие топливовоздушной смеси
- Третий такт – рабочий ход
- Четвертый такт – выброс отработавших газов в окружающую среду
- Двухтактные ДВС и их особенности
- Преимущества многоцилиндровых двигателей и их устройство
- Паровая турбина
Физика. 10 класс
Конспект урока
Физика, 10 класс
Урок 25. Тепловые двигатели. КПД тепловых двигателей
Перечень вопросов, рассматриваемых на уроке:
1) Понятие теплового двигателя;
2)Устройство и принцип действия теплового двигателя;
3)КПД теплового двигателя;
Глоссарий по теме
Тепловой двигатель – устройство, в котором внутренняя энергия топлива превращается в механическую.
КПД (коэффициент полезного действия) – это отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.
Двигатель внутреннего сгорания – двигатель, в котором топливо сгорает непосредственно в рабочей камере (внутри) двигателя.
Реактивный двигатель – двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела.
Цикл Карно – это идеальный круговой процесс, состоящий из двух адиабатных и двух изотермических процессов.
Нагреватель – устройство, от которого рабочее тело получает энергию, часть которой идет на совершение работы.
Холодильник – тело, поглощающее часть энергии рабочего тела (окружающая среда или специальные устройства для охлаждения и конденсации отработанного пара, т.е. конденсаторы).
Рабочее тело — тело, которое расширяясь, совершает работу (им является газ или пар)
Основная и дополнительная литература по теме урока:
1. Мякишев Г.Я., Буховцев Б.Б., Сотский Н.Н. Физика.10 класс. Учебник для общеобразовательных организаций М.: Просвещение, 2017. – С. 269 – 273.
2. Рымкевич А.П. Сборник задач по физике. 10-11 класс. -М.: Дрофа,2014. – С. 87 – 88.
Открытые электронные ресурсы по теме урока
Теоретический материал для самостоятельного изучения
Сказки и мифы разных народов свидетельствуют о том, что люди всегда мечтали быстро перемещаться из одного места в другое или быстро совершать ту или иную работу. Для достижения этой цели нужны были устройства, которые могли бы совершать работу или перемещаться в пространстве. Наблюдая за окружающим миром, изобретатели пришли к выводу, что для облегчения труда и быстрого передвижения нужно использовать энергию других тел, к примеру, воды, ветра и т.д. Можно ли использовать внутреннюю энергию пороха или другого вида топлива для своих целей? Если мы возьмём пробирку, нальём туда воду, закроем её пробкой и будем нагревать. При нагревании вода закипит, и образовавшие пары воды вытолкнут пробку. Пар расширяясь совершает работу. На этом примере мы видим, что внутренняя энергия топлива превратилась в механическую энергию движущейся пробки. При замене пробки поршнем способным перемещаться внутри трубки, а саму трубку цилиндром, то мы получим простейший тепловой двигатель.
Тепловой двигатель – тепловым двигателем называется устройство, в котором внутренняя энергия топлива превращается в механическую.
Вспомним строение простейшего двигателя внутреннего сгорания. Двигатель внутреннего сгорания состоит из цилиндра, внутри которого перемещается поршень. Поршень с помощью шатуна соединяется с коленчатым валом. В верхней части каждого цилиндра имеются два клапана. Один из клапанов называют впускным, а другой – выпускным. Для обеспечения плавности хода поршня на коленчатом вале укреплен тяжелый маховик.
Рабочий цикл ДВС состоит из четырех тактов: впуск, сжатие, рабочий ход, выпуск.
Во время первого такта открывается впускной клапан, а выпускной клапан остается закрытым. Движущийся вниз поршень засасывает в цилиндр горючую смесь.
Во втором такте оба клапана закрыты. Движущийся вверх поршень сжимает горючую смесь, которая при сжатии нагревается.
В третьем такте, когда поршень оказывается в верхнем положении, смесь поджигается электрической искрой свечи. Воспламенившаяся смесь образует раскаленные газы, давление которых составляет 3 -6 МПа, а температура достигает 1600 -2200 градусов. Сила давления толкает поршень вниз, движение которого передается коленчатому валу с маховиком. Получив сильный толчок маховик будет дальше вращаться по инерции, обеспечивая движение поршня и при последующих тактах. Во время этого такта оба клапана остаются закрытыми.
В четвертом такте открывается выпускной клапан и отработанные газы движущимся поршнем выталкиваются через глушитель (на рисунке не показан) в атмосферу.
Любой тепловой двигатель включает в себя три основных элемента: нагреватель, рабочее тело, холодильник.
Для определения эффективности работы теплового двигателя вводят понятие КПД.
Коэффициентом полезного действия называют отношение полезной работы, совершенной данным двигателем, к количеству теплоты, полученному от нагревателя.
Q1 – количество теплоты полученное от нагревания
Q2 – количество теплоты, отданное холодильнику
– работа, совершаемая двигателем за цикл.
Этот КПД является реальным, т.е. как раз эту формулу и используют для характеристики реальных тепловых двигателей.
Зная мощность N и время работы t двигателя работу, совершаемую за цикл можно найти по формуле
Передача неиспользуемой части энергии холодильнику.
В XIX веке в результате работ по теплотехнике французский инженер Сади Карно предложил другой способ определения КПД (через термодинамическую температуру).
Главное значение этой формулы состоит в том, что любая реальная тепловая машина, работающая с нагревателем, имеющим температуру Т1, и холодильником с температурой Т2, не может иметь КПД, превышающий КПД идеальной тепловой машины. Сади Карно, выясняя при каком замкнутом процессе тепловой двигатель будет иметь максимальный КПД, предложил использовать цикл, состоящий из 2 адиабатных и двух изотермических процессов
Цикл Карно — самый эффективный цикл, имеющий максимальный КПД.
Не существует теплового двигателя, у которого КПД = 100% или 1.
Формула дает теоретический предел для максимального значения КПД тепловых двигателей. Она показывает, что тепловой двигатель тем эффективнее, чем выше температура нагревателя и ниже температура холодильника. Лишь при температуре холодильника, равной абсолютному нулю, η = 1.
Но температура холодильника практически не может быть ниже температуры окружающего воздуха. Повышать температуру нагревателя можно. Однако любой материал (твердое тело) обладает ограниченной теплостойкостью, или жаропрочностью. При нагревании он постепенно утрачивает свои упругие свойства, а при достаточно высокой температуре плавится.
Сейчас основные усилия инженеров направлены на повышение КПД двигателей за счет уменьшения трения их частей, потерь топлива вследствие его неполного сгорания и т. д. Реальные возможности для повышения КПД здесь все еще остаются большими.
Повышение КПД тепловых двигателей и приближение его к максимально возможному — важнейшая техническая задача.
Тепловые двигатели – паровые турбины, устанавливают также на всех АЭС для получения пара высокой температуры. На всех основных видах современного транспорта преимущественно используются тепловые двигатели: на автомобильном – поршневые двигатели внутреннего сгорания; на водном – двигатели внутреннего сгорания и паровые турбины; на железнодорожном – тепловозы с дизельными установками; в авиационном – поршневые, турбореактивные и реактивные двигатели.
Сравним эксплуатационные характеристики тепловых двигателей.
Паровой двигатель – 8%.
Паровая турбина – 40%.
Газовая турбина – 25-30%.
Двигатель внутреннего сгорания – 18-24%.
Дизельный двигатель – 40– 44%.
Реактивный двигатель – 25%.
Широкое использование тепловых двигателей не проходит бесследно для окружающей среды: постепенно уменьшается количество кислорода и увеличивается количество углекислого газа в атмосфере, воздух загрязняется вредными для здоровья человека химическими соединениями. Возникает угроза изменения климата. Поэтому нахождение путей уменьшения загрязнения окружающей среды является сегодня одной из наиболее актуальных научно-технических проблем.
Примеры и разбор решения заданий
1. Какую среднюю мощность развивает двигатель автомобиля, если при скорости 180 км/ч расход бензина составляет 15 л на 100 км пути, а КПД двигателя 25%?
Дано: v=180км/ч = 50 м/с, V = 15 л = 0,015 м 3 , s = 100 км = 10 5 м, ɳ = 25% = 0,25, ρ = 700 кг/м 3 , q = 46 × 10 6 Дж/кг.
Запишем формулу для расчёта КПД теплового двигателя:
Работу двигателя, можно найти, зная время работы и среднюю мощность двигателя:
Количество теплоты, выделяющееся при сгорании бензина, находим по формуле:
Учитывая всё это, мы можем записать:
Время работы двигателя можно найти по формуле:
Из формулы КПД выразим среднюю мощность:
.
Подставим числовые значения величин:
После вычислений получаем, что N=60375 Вт.
Ответ: N=60375 Вт.
2. Тепловая машина имеет КПД 25 %. Средняя мощность передачи теплоты холодильнику составляет 4 кВт. Какое количество теплоты рабочее тело получает от нагревателя за 20 с?
Дано: ɳ = 25%, N = 4000 Вт, t = 20 с.
=
– это количество теплоты, отданное холодильнику
Тепловые двигатели
Начиная с 17-го века широко используется свойство газа совершать работу при расширении. Устройства, которые преобразуют внутреннюю энергию газа в механическую работу, называются тепловыми машинами. Труд таких известных инженеров и ученых, как Ползунов, Ньюкомен, Джеймс Уатт, Шарль, Мариотт, Авогадро, Бойль, Дальтон, Карно, Клапейрон и, другие, позволил изобрести различные виды тепловых машин. Благодаря экскаваторам, подъемным кранам, станкам и другим механическим устройствам, снабженным тепловыми машинами, за короткое время мы можем выполнить большие объемы работы.
Расширение и работа газа
Газ, расширяясь, может совершать работу. От кастрюльки с кипящей водой, накрытой крышкой, слышен звук постукивающей крышки. Звук возникает благодаря тому, что кипящая вода бурно испаряется. Пар поднимается над водой, занимая пространство между поверхностью воды и крышкой. Расширяясь, пар приподнимает крышку (рис. 1).
Часть пара покидает кастрюльку через образовавшуюся под крышкой щель. И крышка опускается. Этот процесс будет повторяться до тех пор, пока мы не прекратим подогревать кастрюльку.
Главным здесь является то, что нагретый пар (газ), расширяясь, может совершать работу, сдвигая крышку.
Джеймс Уатт в конце 17-го века придумал способ увеличить эффективность использования этого свойства нагретого пара. Он изобрел конденсатор пара, благодаря ему усовершенствовал паровую машину Ньюкомена. Это позволило увеличить ее эффективность в 3 раза.
Четыре вида тепловых двигателей
На сегодня известны такие типы тепловых двигателей (рис. 2):
- двигатель внутреннего сгорания,
- паровая турбина и газовая турбина,
- паровая машина,
- реактивный двигатель.
Превращение энергии в тепловом двигателе
В любом тепловом двигателе по цепочке происходят такие превращения энергии (рис. 3):
- тепловая энергия топлива преобразуется во внутреннюю энергию газа;
- нагретый газ расширяется, и совершает работу, охлаждаясь при этом;
- часть внутренней энергии газа переходит в механическую энергию.
Двигатель внутреннего сгорания (ДВС)
Чтобы представить простой тепловой двигатель, кастрюльку заменим цилиндром, а крышку – металлическим поршнем. Поршень должен плотно прилегать к стенкам отполированного цилиндра, так, чтобы двигаться по нему с минимальным трением. Если в пространство под поршнем поместить газ, то нагреваясь и расширяясь, он сможет сдвинуть поршень. Полученное устройство называется тепловым двигателем.
Поступательное движение поршня с помощью дополнительных механических частей можно преобразовать во вращательное движение рабочего вала.
На сегодняшний день ДВС – это самый распространенный вид тепловых двигателей. В таких двигателях используется жидкое или газообразное топливо – бензин, керосин, спирт, нефть, горючий газ. Топливо в таком двигателе сгорает внутри цилиндра, поэтому его назвали двигателем внутреннего сгорания (ДВС).
Примечание: Паровая машина и, к примеру, двигатель Стирлинга, относятся к двигателям внешнего сгорания. Топливо в таких машинах сгорает за пределами рабочего цилиндра.
Существуют одноцилиндровые и многоцилиндровые двигатели внутреннего сгорания.
По количеству тактов работы двигателя, умещающихся в рабочий цикл, выделяют
- двухтактные и
- четырехтактные двигатели.
Как устроен одноцилиндровый ДВС
Рассмотрим, какие части включает в себя одноцилиндровый двигатель (рис. 4).
Основными частями являются цилиндр и поршень, который может двигаться внутри цилиндра поступательно. Над рабочей поверхностью поршня располагается свеча. В пространство между поршнем и свечой помещаются смесь паров топлива и воздуха. Такой газ называют рабочим телом. Электрическая свеча зажигания вызывает процесс горения топливовоздушной смеси.
Впуск воздуха и паров топлива и выпуск сгоревших газов осуществляется двумя клапанами, которые так и называют – впускным и выпускным.
А шатун соединяет поршень и коленчатый вал. С помощью такого соединения возвратно-поступательное движение поршня преобразовывается во вращательное движение коленчатого вала.
Для эффективной работы двигателя необходимо открывать и закрывать каждый клапан и подавать электричество к свече в нужные моменты времени. Поэтому, клапаны, поршень и свеча работают согласованно. Согласованность их работы реализована с помощью кулачкового механизма и различных датчиков, которые на рисунке не показаны.
Что такое мертвая точка и ход поршня
Вначале познакомимся с понятиями мертвых точек и рабочего хода. Это поможет разобраться, из каких частей состоит рабочий цикл двигателя.
Две мертвые точки — это крайние положения поршня. В этих положениях поршень меняет направление движения на противоположное. Выделяют две мертвые точки – верхнюю и нижнюю (рис. 5). Расстояние между ними называют ходом поршня.
Что происходит внутри цилиндра при работе ДВС
При работе двигателя в цилиндре периодически происходит сгорание смеси топлива и воздуха, а, так же, производится выброс отработанных газов.
Сжатые поршнем газы загораются от электрической искры. Температура горения поднимается до 1800 градусов Цельсия. Поэтому, каждый двигатель внутреннего сгорания дополнительно содержит систему охлаждения.
Раскаленные газы расширяются, давление на поршень и стенки цилиндра резко возрастает. Это давление с силой толкает поршень, приводя его в движение. Усилие передается с поршня на шатун и далее на коленчатый вал, вращая его.
Примечание: Раскаленные газы обладают большим запасом внутренней энергии. Расширяясь, газы охлаждаются, при этом часть их внутренней энергии переходит в механическую работу.
Таким образом, энергия топлива преобразуется во вращение коленчатого вала.
Этапы работы четырехтактного ДВС
Теперь перейдем к рассмотрению рабочего цикла двигателя. Весь рабочий цикл состоит из четырех тактов — движений поршня. Двух движений вверх и двух — вниз. Поэтому двигатель называют четырехтактным. Каждому движению поршня вверх, или вниз соответствует половина оборота коленчатого вала (рис. 6).
Первый такт – впрыск топлива
Сначала поршень движется вниз (рис. 6а). При этом между поршнем и клапанами создается область пониженного давления. Поэтому, когда открывается впускной клапан, пары топлива и воздух засасываются внутрь цилиндра. Сдвигаясь, поршень через шатун приводит во вращение коленчатый вал, снабженный утяжеляющим его маховиком. Первый такт заканчивается в момент достижения поршнем нижней мертвой точки.
Второй такт – сжатие топливовоздушной смеси
Коленчатый вал продолжает вращение по инерции и увлекает поршень с помощью шатуна. Теперь поршень движется вверх (рис. 6б). Он сжимает смесь топлива и воздуха, находящуюся в объеме над ним. Давление над поршнем повышается и газ разогревается. Процесс сжатия заканчивается в верхней мертвой точке.
Третий такт – рабочий ход
В момент, когда поршень проходит верхнюю мертвую точку и начинает движение вниз (рис. 6в), на свечу зажигания подается высокое электрическое напряжение. Между рабочими электродами свечи проскакивает искра. Эта искра поджигает смесь паров топлива и воздуха. Температура газов поднимается почти до двух тысяч градусов. Давление раскаленного газа на стенки цилиндра и поршень возрастает в тысячи раз. Сила давления толкает поршень, он движется к нижней мертвой точке. Раскаленные газы расширяются и охлаждаются. При этом, они двигают поршень вниз, то есть, совершают механическую работу. Отсюда и название такта – рабочий ход.
Четвертый такт – выброс отработавших газов в окружающую среду
В момент, когда поршень минует нижнюю мертвую точку и, вращение коленчатого вала с помощью шатуна увлекает его вверх (рис. 6г), открывается выпускной клапан. Отработанные газы покидают цилиндр. Это продолжается до момента, когда поршень достигнет верхней мертвой точки. В этот момент полный цикл работы завершается. Двигатель готов к началу нового четырехтактного процесса.
Во время второго и третьего тактов впускной и выпускной клапаны закрыты. Впускной клапан открыт во время первого такта, выпускной – во время четвертого.
Двухтактные ДВС и их особенности
Двигатель называют двухтактным, когда полный цикл его работы совершается за два хода поршня – такта. Пока поршень совершает два хода, коленчатый вал совершает один оборот.
Сжатие и рабочий ход происходят аналогично четырехтактному двигателю. Отличие заключается в процессах впрыска и выпуска отработанных газов. Эти процессы происходят совместно и в течение короткого времени, покуда поршень проходит нижнюю мертвую точку.
Впрыск топливовоздушной смеси и выпуск отработанных газов называется продувкой цилиндра.
Изобрел двухтактный двигатель инженер из Шотландии Д. Клерк в 1881 году. Джозеф Дей и Ф. Кок спустя десять лет в Англии усовершенствовали конструкцию. Двумя годами ранее — в 1879 году, свой двухтактный двигатель независимо от них построил Карл Бенц.
Количество нерабочих ходов поршня в два раза меньше, по сравнению с четырехтактным двигателем. Поэтому потери на трение сократились в два раза.
Но главное преимущество двухтактного двигателя в том, что он обладает в полтора раза большей мощностью при одинаковых с четырехтактным двигателем объемом цилиндра и оборотах двигателя.
Благодаря этому двухтактные двигатели используются на средних и тяжелых морских судах и в авиации. Вал двигателя с валом гребного винта, или воздушным винтом, соединяется без редуктора. В судостроении используют тяжелые малооборотные двигатели. А в конструкциях самолетов, в основном двухтактные роторные двигатели.
Некоторые модели мотоциклов, малолитражных автомобилей, грузовиков и автобусов, так же, оснащаются двухтактными двигателями внутреннего сгорания.
Основной недостаток таких двигателей заключается в том, что их детали работают при более высоких температурах. Это вызывает сокращение срока службы. А в мощных двигателях требует дополнительного охлаждения поршней.
Еще один недостаток заключается в одновременном впрыске топлива и выпуска отработанных газов. При этом пары топлива смешиваются с отработанными газами, полностью исключить такое смешивание не получается. Из-за этого снижается эффективность сжигания топлива в цилиндрах таких двигателей.
Преимущества многоцилиндровых двигателей и их устройство
В многоцилиндровых двигателях топливо воспламеняется в различные моменты времени последовательно в нескольких цилиндрах. При этом рабочий вал двигателя вращается более равномерно, ему передается больше энергии. Это позволяет повысить мощность двигателя.
В мопедах и скутерах чаще всего используют одноцилиндровые двигатели (рис. 7).
В мотоциклах – двухцилиндровые. В легковых автомобилях — четырехцилиндровые двигатели. А грузовые автомобили, большие тракторы и спецтехника могут оснащаться восьмицилиндровыми двигателями. Более мощная и грузоподъемная техника, а, так же, речные и морские суда, оснащаются двигателями, имеющими, двенадцать, шестнадцать и, более цилиндров.
Рабочий вал многоцилиндрового двигателя вращается более равномерно и получает энергию от нескольких поршней. Поэтому многоцилиндровые двигатели имеют повышенную мощность.
В сложных двигателях цилиндры располагают, поворачивая один относительно другого на различные углы (рис. 8).
Имеются такие конструкции двигателей:
- V-образные, в которых цилиндры располагаются в виде латинской буквы V;
- рядные, когда несколько цилиндров располагают в ряд один за другим;
- оппозитные, в которых одни цилиндры развернуты на 180 градусов по отношению к другим цилиндрам и поршни одновременно проходят либо верхнюю, либо нижнюю мертвую точку, двигаясь в противоположные стороны;
- роторные, несколько цилиндров в них располагаются в виде многолучевой звезды, такие двигатели применяются в авиации.
Примечания:
- Существуют V-образные двигатели, в которых цилиндры развернуты на 180 градусов. При этом, когда один поршень проходит свою верхнюю мертвую точку, соседний поршень проходит свою нижнюю точку.
- В оппозитных двигателях оба поршня двигаются в противоположные стороны — либо расходятся максимально далеко, либо максимально сближаются. Двигаясь, поршни одновременно проходят либо верхнюю, либо нижнюю мертвую точку. Поэтому двигатель называется оппозитным.
Паровая турбина
Турбина от двигателя внутреннего сгорания отличается более простым устройством. Основная сложность при изготовлении турбин заключается в создании легких, прочных и эффективных лопаток, приводящих в движение диски и рабочий вал.
Тепловой двигатель, в котором вал двигателя вращается без помощи поршня, шатуна и коленчатого вала, называется паровой турбиной.
Устройство турбины отличается простой конструкцией (рис. 9).
На вал насажен диск, содержащий на ободе лопатки. На эти лопатки направлены сопла, из них под большим давлением в сторону лопаток подается горячий газ или пар, который вращает лопасти и приводит в движение диск турбины и вал двигателя.
Современные турбины содержат несколько дисков с лопастями, находящихся на общем валу. Пар последовательно проходит лопатки нескольких дисков и каждому передает часть своей энергии. Это повышает эффективность турбины.
В качестве двигателей турбины применяются на больших судах.
Частота вращения турбин может достигать нескольких тысяч оборотов в минуту. На электростанциях вал турбины соединяется с генератором тока, благодаря чему механическая энергия вращения турбины преобразуется в электрическую энергию.
В России изготавливают турбины мощностью до 1,2 миллиардов Ватт.