Лекция № 13 Специальные технические жидкости
1. Основные виды охлаждающих жидкостей.
2. Эксплуатационные требования к качеству охлаждающих жидкостей.
3. Вода как охлаждающая жидкость.
4. Низкозамерзающие охлаждающие жидкости.
5. Ассортимент низкозамерзающих охлаждающих жидкостей.
6. Тормозные жидкости.
7. Ассортимент и потребительские свойства.
8. Прочие технические жидкости.
Основные виды охлаждающих жидкостей
Технические жидкости применяются для различных целей: охлаждения двигателей, торможения и амортизации автомобилей, приведения в действие механизмов, силовых агрегатов и т.п.
Требования к качеству жидкостей настолько жестки, многообразны и специфичны, что для приготовления их используют многочисленные химические соединения: гликоли, углеводороды, спирты, глицерин, эфиры и др.
В зависимости от назначения и свойств жидкости подразделяются на: охлаждающие, для тормозных и гидравлических систем автомобилей, амортизационные и пусковые.
Назначение охлаждающих жидкостей — воспринимать и отводить тепловой поток от тех зон и деталей двигателя, перегрев которых вызывает нарушение нормальной работы или разрушение. Основной тепловой поток образуется теплотой, которая, согласно второму закону термодинамики, не может быть преобразована в механическую работу. Это та самая теплота, которая должна быть передана холодному источнику. Количество ее зависит от разности температур горячего и холодного источника при заданной массе и теплоемкости рабочего тела. Если бы удалось осуществить адиабатный (без обмена тепла) рабочий цикл, то такой двигатель мог бы работать без системы охлаждения: количество теплоты, которое должно быть отдано холодному источнику, удалялось бы из двигателя с отработавшими газами.
В настоящее время делаются попытки создать такой двигатель, рабочий цикл которого максимально приблизился бы к адиабатическому циклу.
К сожалению, в реальном двигателе часть теплоты, которая должна была бы при адиабатическом цикле превратиться в полезную работу, в процессе расширения рабочего тела отводится через стенки цилиндров, днища поршней, когда газ полностью не расширился, определенная часть теплоты отработавших газов уходит в систему охлаждения после их выхода из цилиндра. Отвод теплоты происходит через стенки выпускных каналов, находящихся в головке цилиндра и тоже омываемых охлаждающей жидкостью.
Наиболее точно определить количество теплоты, отводимое системой охлаждения, можно только экспериментальным путем, при оценке теплового баланса двигателя. Структура теплового баланса современных двигателей внутреннего сгорания показывает, что система охлаждения должна воспринять и рассеять в пространстве примерно 1/3 тепловой энергии сгоревшего топлива. Это очень большой поток теплоты, соизмеримый с потоком, уносимым отработавшими газами, и с теплотой, превращенной в полезную работу. Распределение теплоты в двигателе зависит как от его типа (бензиновый или дизель), так и от режима работы. В табл. 1 приведен типичный тепловой баланс при работе на номинальном режиме.
Моторные масла и топливо тоже можно отнести к категории охлаждающих жидкостей, поскольку кроме прямых своих функций они способствуют охлаждению узлов и механизмов двигателя, а в ряде случаев их используют только для охлаждения поршней и других деталей.
Топливо. Являясь источником тепловой энергии в процессе сгорания, топливо до сгорания, благодаря теплоемкости и скрытой теплоте испарения в определенных условиях, может играть существенную роль в понижении тепловой напряженности двигателя. Эта особенность жидких топлив была замечена еще на самых ранних этапах развития двигателестроения и в ряде случаев широко использовалась для охлаждения теплонапряженных деталей и двигателя в целом. Особенно широко этой способностью топлив пользовались для понижения теплового режима высокофорсированных двигателей спортивных автомобилей и мотоциклов.
В автомобильных двигателях с системой непосредственного впрыскивания топлива в цилиндры факел топлива форсункой направляют всегда в сторону головки выпускного клапана. Этим обеспечивается быстрое и полное испарение топлива и одновременно охлаждение клапана.
В карбюраторных двигателях малой и средней степени форсирования (18—40 кВт/л) охлаждающую способность топлива обычно не используют; наоборот, для интенсивного и полного его испарения впускной трубопровод имеет систему подогрева (жидкостную или газовую), которая компенсирует понижение температуры во впускной трубе двигателя подводом теплоты.
В высокофорсированных двигателях (со степенью форсирования более 45—50 кВт/л) скрытую теплоту испарения топлива часто использовали для снижения их тепловой напряженности.
Особенно эффективно действуют как охлаждающие жидкости такие топлива, как этиловый (С2Н5ОН) и метиловый (СН3ОН) спирты, обладающие высокой скрытой теплотой парообразования. Это свойство спиртов широко используют для снижения тепловой напряженности спортивных, автомобильных и мотоциклетных двигателей.
Снижение температуры повышает не только надежность работы двигателей, но и мощность их, так как благодаря понижению температуры горючей смеси увеличивается ее плотность на 20-25 %.
Для топлив, используемых как охлаждающие жидкости, важны такие физические свойства, как теплота испарения, теплопроводность и теплоемкость (табл. 2).
Масло. Моторное масло в двигателе можно использовать как смазывающий и охлаждающий материал. Причем маслом охлаждают наиболее теплонапряженные детали двигателя и, в первую очередь, поршни, система масляного охлаждения которых может быть выполнена различно.
Наиболее простой способ — подача масла под давлением на внутреннюю поверхность днища поршня. Этот способ особенно удобен для двигателей средних размеров с диаметром цилиндров 100-150 мм, так как здесь не требуется специальной усложненной конструкции поршней. Форсунки, подающие масло, могут быть установлены неподвижно на картере двигателя или на верхней головке шатуна.
Второй способ масляного охлаждения поршня называют «взбалтыванием». Для этого в верхней внутренней полости поршня выполнена специальная чашеобразная полость, в которую через форсунку, установленную в верхней головке шатуна, подается масло. Благодаря силам инерции это масло взбалтывается и интенсивно омывает верхнюю внутреннюю поверхность поршня, охлаждая ее.
Наиболее сложны и самые эффективные — циркуляционные и смешанные системы, их применяют обычно в тепловозных и судовых двигателях большой мощности с диаметром цилиндров более 200-250 мм.
В табл. 3 приведены данные, показывающие снижение температуры поршня в двух наиболее характерных точках: в середине днища со стороны камеры сгорания и в канавке верхнего поршневого кольца.
Для предварительных расчетов систем масляного охлаждения, кроме вязкости масел, которая оказывает решающее влияние на гидродинамические течения, необходимо знать их теплоемкость и теплопроводность. Теплоемкость масла примерно в 2 раза меньше теплоемкости воды и зависит от его плотности и температуры. Зависимость теплоемкости от температуры следует учитывать обязательно, так как в режиме охлаждающей жидкости масло может нагреваться до высоких температур (100-150 °С).
Вода. Вода замерзает при 0 °С и при этом примерно на 10% увеличивается в объеме. Образующийся лед давит на стенки системы охлаждения, что может привести к разрушению двигателя и радиатора. Поэтому при эксплуатации двигателей в холодное время года во время стоянок периодически приходится прогревать двигатель, а при длительных остановках — сливать воду из системы охлаждения. Вода при нормальном давлении кипит при 100 °С. Небольшая разница между температурой кипения воды и оптимальной температурой в системе охлаждения (80-85 °С) также создает ряд дополнительных трудностей при эксплуатации двигателей, так как наблюдаются большие потери воды при ее испарении. Это особенно сильно сказывается при перегрузках двигателя и его работе в высокогорных районах, где из-за снижения барометрического давления вода кипит при более низких температурах.
Наличие в воде растворенных газов и некоторых солей вызывает коррозийное разрушение металлов и сплавов. Высокой коррозийной активностью обладают кислород, углекислый газ и сероводород, поэтому пользоваться водой из источников нельзя. Основное наиболее неприятное свойство воды — возможность образования накипи и шламов в системе охлаждения. Накипь уменьшает сечение каналов, имеет в 10-15 раз меньшую теплопроводность, чем металл, что ухудшает отвод тепла. Чем плотнее и тверже слой накипи, чем больше ее высота, тем сильнее нарушается тепловой режим двигателя и больше расходуется топлива и смазочных материалов.
Умягчение воды. Известны различные методы умягчения воды, их выбирают в зависимости от свойства природной воды и тех требований, которые предъявляются к ее качеству. Наиболее простой способ умягчения воды — ее предварительное кипячение, при этом основная масса солей карбонатной жесткости разлагается и выпадает в осадок. Прокипяченную воду нужно профильтровать через плотную ткань для удаления выпавших осадков и фильтрованной водой заполнить систему охлаждения двигателя.
Имеются многочисленные химические способы умягчения воды. К жесткой воде добавляют (предварительно рассчитанное) количество химических реагентов. Все соли как карбонатной, так и некарбонатной жесткости переводят в осадок, который удаляют отстаиванием или фильтрацией. Известно много реагентов, с помощью которых соли жесткости переводятся в осадки: умягчение с помощью растворов соды (Na2C03) низвести [Са(ОН)2], широко применяется тринатрийфосфат (безводный) (Na3P04), его добавляют в количестве 55 мг на каждый мг-экв/л жесткости. Используют гексаметофосфат [(NaP03)6] и другие реагенты.
Наиболее распространены сравнительно новые методы ионного обмена, например катионитовый метод. Катионитами называются вещества, которые могут обменивать свои катионы на катионы солей жесткости. Известны Na-катионирование и Н-катионирование, в первом случае катионы жесткости Са и Mg обмениваются на катионы Na, а во втором — на катионы водорода. При этих способах умягчения накипь не образуется, но в первом случае повышается щелочность воды, так как в умягченной воде накапливается много легкорастворимых солей натрия, а во втором — кислотность из-за накопления водородных катионов.
Для умягчения применяют активные смолы и полимеры, характеризующиеся сильной адсорбционной способностью по отношению к катионам (пластмассы на основе формальдегида и фенола) или к анионам (пластмассы на основе формальдегида и мочевины). При обработке жесткой воды такими ионитами легко получить дистиллированную воду, из морской воды — питьевую, можно опреснить и очистить сильно засоленные воды.
Методы подготовки воды (химические, ионный обмен), применяемые на тепловых станциях, требуют специального оборудования, высокой квалификации обслуживающего персонала, химических реагентов, что затрудняет их внедрение в условиях сельского хозяйства. Имеющиеся более простые методы — умягчение воды настоем сена, золы, зеленой травы и др. — несовершенны, поэтому в практике эксплуатации машинно-тракторного парка широкого распространения не имеют, несмотря на очевидную необходимость умягчения воды.
Для условий автотранспортных предприятий может быть перспективным метод магнитной обработки воды, сущность которого сводится к пропуску воды через силовые линии магнита или электромагнита. При этом соли жесткости, образующие накипь, выделяются в виде твердой фазы — шлама, который легко удалить фильтрацией воды.
Несмотря на простоту метода и широкое его применение, существуют противоречивые мнения о его эффективности, так как при умягчении одних вод результаты хорошие, а других нет. По-видимому, это объясняется тем, что до сих пор нет достаточно убедительных теоретических представлений о механизме действия магнитного поля на умягчаемую воду. Нашими и зарубежными учеными разработан ряд гипотез, большинство из которых утверждает, что магнитное поле действует на ионы солей, растворенных в воде, происходит их поляризация, способствующая образованию центров кристаллизации.
Магнитная обработка эффективна, если вода нестабильна, т. е. пересыщена по карбонату кальция.
Если нет возможности использовать в системе охлаждения мягкую воду, то можно непосредственно в двигатель вводить присадки, предотвращающие образование накипи. В этом случае широко используется хромпик (К2Сг207). При жесткости воды 8-9 мг-экв/л его добавляют до 10 г на 1 л воды. Эффективны фосфаты натрия (NaP03)6 и Na3P04. Эти вещества переводят накипеобразующие соли Са и Mg в рыхлые осадки, циркулирующие вместе с водой и легко удаляемые при промывке системы охлаждения. Кроме того, некоторые присадки на поверхности деталей образуют оксидные пленки, предохраняющие металл от коррозии.
Следует помнить, что в системе охлаждения одну и ту же воду без присадок нужно использовать возможно более длительное время и реже ее сливать. После промывки системы охлаждения в нее нужно опять заливать ту же воду (слитую), так как накипь, образовавшаяся при первом использовании воды, в дальнейшем уже увеличиваться не будет (если не добавлять жесткую воду).
Савватеев Иван Валерьевич
Технические жидкости
Наряду с топливом, маслом и смазками в современных автомобилях широко используются технические жидкости (для охлаждения двигателей, обеспечения торможения и амортизации автомобилей во время движения, приведения в действие механизмов, силовых агрегатов и т.п.).
Технические жидкости должны отвечать многообразным и специфичным требованиям, поэтому для их приготовления используются многочисленные химические и синтетические соединения: гликоли, углеводороды, спирты, глицерин, эфиры и др.
В зависимости от назначения и свойств технические жидкости подразделяются на охлаждающие, тормозные, для гидравлических систем, амортизаторные и пусковые. Производятся также промывочные и очистительные жидкости — это этиловый спирт, очистители стекол, различные моющие средства и др.
Детали двигателей внутреннего сгорания, например поршни, гильзы цилиндров, головка блока, непосредственно соприкасаются с продуктами сгорания топлива и сильно нагреваются, т. е. для обеспечения нормальной работы двигатель необходимо охлаждать.
Эффективность и надежность работы системы охлаждения двигателя в значительной степени зависят от качества применяемой охлаждающей жидкости.
Все охлаждающие жидкости должны удовлетворять следующим требованиям:
эффективно отводить тепло (т. е. иметь большую теплоемкость и небольшую вязкость);
иметь высокие температуру кипения и теплоту испарения;
обладать низкой температурой кристаллизации;
не образовывать отложений в системе охлаждения;
не вызывать коррозии металлических деталей и не разрушать резиновые детали системы охлаждения;
не вспениваться в процессе работы;
быть дешевыми, пожаробезопасными и безвредными для здоровья.
Использование воды в качестве охлаждающей жидкости
Наиболее распространенной жидкостью, применяемой для , охлаждения, является вода. Она имеет самую высокую теплоемкость 4,19 кДж/(кг°С), большую теплопроводность, небольшую кинематическую вязкость (v20 о С = 1 мм 2 /с) и большую теплоту испарения.
Однако вода обладает и существенными недостатками, затрудняющими ее применение в качестве охлаждающей жидкости. При 0 о С она замерзает, увеличиваясь в объеме примерно на 10 % и вызывая разрушение системы охлаждения при дальнейшем понижении температуры окружающего воздуха.
При использовании воды в качестве охлаждающей жидкости образование отложений в системе охлаждения двигателя определяется в основном наличием растворенных в воде солей, образующих накипь, теплопроводность которой приблизительно в 100 раз меньше, чем теплопроводность стали. Отложение накипи в системе охлаждения (рис. 8.1) вызывает нарушение теплового режима работы двигателя, увеличение расхода топлива и масла.
О количестве растворенных в воде солей можно судить по ее жесткости, единицей измерения которой является миллиграмм-эквивалент (мг-экв.). Мягкая вода содержит до 3 мг-экв. солей в 1 л, вода средней жесткости — от 3 до 6 мг-экв., а жесткая — более 6 мг-экв.
Целесообразно применять для охлаждения двигателя мягкую воду, не образующую накипь. При использовании для этих целей воды средней жесткости возникает необходимость не реже двух раз в год очищать систему охлаждения от образовавшейся накипи.
Рис. 8.1. Типичные места отложения накипи (/) и шлама (2) в системе охлаждения автомобильных двигателей
Применять жесткую воду следует после предварительного ее умягчения (кипячения, обработки известью и содой) или с добавлением противонакипных присадок (антинакипинов). Например, калиевый хромпик К2Сг2О7 при концентрации его от 5 до 10 г в 1 л воды способен превращать содержащиеся в ней соли в вещества, не образующие накипи.
Применению любого антинакипина должна предшествовать очистка системы охлаждения от образовавшейся ранее накипи.
На рис. 8.2 приведена схема установки для умягчения жесткой воды.
Рис. 8.2. Схема стационарной катионитовой установки для умягчения жесткой воды:
1— насос; 2 — катионитовый фильтр с сульфированным углем; 3 — мешалка для приготовления раствора поваренной соли; 4 — сборник умягченной воды
На рис. 8.2 приведена схема установки для умягчения жесткой воды.
Низкозамерзающие охлаждающие жидкости
В зимний период эксплуатации в системах охлаждения применяют низкозамерзающие охлаждающие жидкости — антифризы, являющиеся смесью этиленгликоля с водой.
Этиленгликоль (двухатомный спирт СН2ОН —СН2ОН, или С2Н4(ОН)2) представляет собой маслянистую желтоватую жидкость без запаха с температурой кипения 197 °С и температурой кристаллизации — 11,5 °С. Минимальное значение температуры замерзания смеси этиленгликоля с водой (—75 °С) получают при концентрации этиленгликоля 66,7 % (рис. 8.3).
Рис. 8.3.а Зависимость плотности р при 20°С антифризов от содержания в них воды
Рис. 8.3. Зависимость температуры замерзания t 3 антифризов от содержания в них воды
Этиленгликоль и его водные растворы при нагревании сильно расширяются. Чтобы предотвратить выброс смеси, ее не доливают в систему охлаждения на 6. 8 % от общего объема. Этиленгликолевые антифризы имеют повышенную коррозионность по отношению к металлам и разрушают резину.
В состав антифризов вводят противокоррозионные присадки: декстрин —углевод типа крахмала (1 г на литр), предохраняющий от разрушения свинцово-оловянистый припой, алюминий и медь, и динатрий фосфат (2,5. 3,5 г на литр), защищающий черные металлы, медь и латунь.
Иногда в простые антифризы вводят молибденовый натрий в количестве 7,5. 8,0 г на литр, предотвращающий коррозию цинковых и хромовых покрытий на деталях системы охлаждения. При этом в обозначении антифриза добавляют букву М.
Отечественная промышленность выпускает простые и дешевые антифризы марок 40 и 65 (ГОСТ 159—52). Антифриз марки 40, представляющий собой смесь 53 % этиленгликоля и 47% воды, имеет температуру замерзания не выше —40 «С, а антифриз марки 65, содержащий 66 % этиленгликоля и 34 % воды, — не выше -65 °С.
Впервые для автомобилей ВАЗ в нашей стране был выпущен антифриз «Тосол», содержащий противокоррозионные, антивспенивающую и антифрикционные присадки. «Тосол» производится трех марок: АМ, А-40 и А-65М (табл. 8.1).
С 1988 г. выпускается антифриз «Лена» трех марок: ОЖ-К, ОЖ-40 и ОЖ-65.
Поскольку антифризы различаются по рецептуре, смешивать разные марки между собой не следует.
При использовании антифризов надо иметь в виду, что в системе охлаждения в первую очередь испаряется вода, которую необходимо периодически доливать в радиатор.
Необходимо также следить за тем, чтобы в этиленгликолевые жидкости не попадали бензин и другие нефтепродукты, так как это вызывает вспенивание и выброс жидкости через пробку радиатора.
Срок службы охлаждающих жидкостей ограничивается. Опытным путем установлено, что «Тосол» надежно работает два года, а при интенсивной эксплуатации — в течение 60 тыс. км пробега.
Этиленгликоль — сильный пищевой яд, поэтому после контакта с ним необходимо тщательно мыть руки с мылом.
Жидкости для гидравлических систем
Жидкости для гидравлических систем применяются в гидравлических приводах и амортизаторах автомобилей, а также в подъемных устройствах автомобилей-самосвалов.
В гидроприводах автомобилей температура жидкости обычно изменяется от — 40 °С зимой до 80. 100 °С летом, а при эксплуатации автомобилей в арктических условиях она нередко опускается до —60 °С. При этом рабочее давление в гидроприводах автомобилей обычно не превышает 10 МПа.
Для обеспечения надежной работы жидкости для гидросистем должны удовлетворять следующим требованиям:
иметь определенный уровень вязкости, низкую температуру застывания и незначительную сжимаемость;
не разрушать металлические и резиновые уплотнительные детали гидросистемы;
обладать высокой физической и химической стабильностью; иметь хорошие противоизносные свойства.
Для гидротормозной системы автомобиля (рис. 8.4) производят тормозные жидкости на кастровой и гликолевой основе.
Жидкости на касторовой основе имеют хорошие смазывающие свойства и не вызывают набухания или разъедания резиновых деталей тормозной системы автомобилей.
В 40-х годах XX века в России была впервые выпущена и до сих пор широко применяется тормозная жидкость БСК, представляющая собой смесь 50 % бутилового спирта и 50 % касторового масла и обладающая хорошими смазывающими свойствами. Недостатком этой жидкости является то, что при —20 °С касторовое масло выпадает в осадок, что может привести к поломке тормозной системы.
Выпускаемые ранее тормозная жидкость АСК и спиртокасторовая жидкость ЭСК (40 % этилового спирта и 60 % касторового масла), имеющие ряд недостатков, не нашли широкого применения.
Специально для автомобилей ВАЗ была выпущена тормозная жидкость «Нева» на гликолевой основе с вязкостной и антикоррозионной присадками, работоспособная в широком диапазоне температур от —50 до +50 «С. Чуть позже была выпущена тормозная жидкость «Томь», превосходящая «Неву» по низкотемпературным свойствам.
Мировым стандартам ( dot -3; dot -4) соответствует выпускаемая в России тормозная жидкость «Роса».
Жидкости на гликолевой основе огнеопасны и токсичны.
Характеристики отечественых тормозных жидкостей приведены в табл. 8.2.
Рис. 8.4. Схема гидравлического привода тормозной системы автомобиля:
1 — главный цилиндр; 2 — поршень главного цилиндра; 3 — резервуар с жидкостью; 4 — трубопровод; 5 — рабочий цилиндр; 6 — поршни рабочего цилиндра
Таблица 8.2 Характеристики основных марок отечественых тормозных жидкостей
«Нева» (ТУ 6-01-1163-82)
«Томь» (ТУ 6-01-1276-82)
«Роса» (ТУ 6-05-221-569-84)
Прозрачная однородная жидкость красного цвета без осадка и механических примесей
Прозрачная однородная жидкость от светло-желтого цвета без осадка. Марки
полностью совместимы между собой
Прозрачная однородная жидкость от светло-желтого до светло-коричневого цвета без осадка