Системы диагностики двигателей внутреннего сгорания

Диагностирование двигателей внутреннего сгорания

Общее диагностирование ДВС позволяет оценить техническое состояние всего двигателя по некоторым обобщенным его параметрам как с качественной, так и в ряде случаев с количественной стороны.

Общее диагностирование двигателя можно проводить как на основе анализа различных внешних симптомов, характеризующих его работу, так и путем инструментального исследования. Наиболее распространены методы, основанные на анализе цвета выхлопных газов, развиваемых двигателем шумов, содержащихся в картерном масле примесей.

Анализ цвета выхлопных газов. Данный метод основан на зависимости между техническим состоянием отдельных частей двигателя и цветом выхлопных газов:

белый цвет свидетельствует о неполном сгорании топлива (поздняя подача и плохой распыл); низкой компрессии (изнашивание цилиндров поршневой группы и разгерметизация клапанов); – попадании воды в цилиндры (дефекты в головке, прогорание прокладок), переохлаждении двигателя, выпадении вспышек (дефекты форсунок, засорение фильтров тонкой очистки топлива, изнашивание топливного насоса);

– светло- или темно-синий цвет характеризует дефект форсунки, сильное сгорание масла (наблюдается при его высоких уровне или давлении газов в картере); закоксовывание поршневых колец, изнашивание поршневой группы; большой зазор между втулкой и стержнем клапана;

– коричневый или черный цвет — признак неполного сгорания топлива из-за плохого распыла, вызванного изнашиванием иглы распылителя форсунки или уменьшением угла опережения вспрыска топлива. Кроме того, этот цвет свидетельствует о недостаточной подаче воздуха и увеличенной подаче топлива;

– сизый или светло-серый цвет указывает на недостаточную обкатку двигателя (плохо приработаны детали поршневой группы); залегание и закоксовывание поршневых колец; увеличение зазоров в сопряжениях поршневой группы.

Если при запуске дизеля нет дыма или он выпускается редкими клубами, то это свидетельствует о недостаточной подаче топлива, заедании клапанов и поршня, поломки пружины подкачивающего насоса, заедании плунжеров и выходе из строя пружин плунжеров топливного насоса, заедании иглы распылителя форсунки, заедании обратного клапана.

Некоторое применение находит цветовой анализ отпечатков, оставляемых выхлопными газами на бумаге.

При этом анализе:

серо-желтый цвет отпечатка указывает на выброс масла, т. е. на чрезмерный угар картерного масла;

– серо-бурый свидетельствует о выбросе несгоревшего топлива, который бывает при пропуске вспышек из-за плохого состояния форсунок и слабой компрессии в цилиндрах;

– крупные частички копоти в дыме указывают на излишек подачи топлива или засорении воздухоочистителя, а также на разгерметизацию камеры сгорания, большое утопание клапанов, плохой распыл топлива;

обнаружение капель воды на отпечатках свидетельствует о прогорании прокладки головки блока цилиндров или трещинах в головке, а также о повреждении уплотнений гильз цилиндров.

Анализ шумов, развиваемых двигателем. Этот метод осуществляют путем прослушивания двигателя. Механические шумы улавливаются достаточно хорошо. Поэтому оценка технического состояния двигателя по характеру шумов довольно широко распространена в эксплуатационных условиях, хотя она в определенной степени субъективна и требует высокой квалификации.

Для прослушивания применяют механические и электронные стетоскопы. Механические стетоскопы бывают акустические, а также резонансные, которые отличаются от акустических использованием акустической камеры, снабженной устройством для регулирования воспринимаемых частот с целью ее настройки в резонанс с частотой вибрации корпуса, что значительно повышает избирательную способность прибора. Примером наиболее простого, так называемого стержневого стетоскопа служит модель КИ-1154, состоящая из прикладываемого к корпусу стержня, снабженного ручкой и наушником. Электронные стетоскопы завода «Экранас» позволяют четко прослушивать даже незначительные шумы.

Утечка сжатых газов, сопровождаемая возникновением ультразвуковых колебаний, может быть зарегистрирована с помощью ультразвуковых стетоскопов. В них вмонтирован блок, преобразующий ультразвуковые колебания или в более низкие, слышимые человеком частоты или же в электрические импульсы, наблюдаемые на экране осциллографа.

В настоящее время стала появляться специальная акустическая диагностическая аппаратура, позволяющая путем сравнения спектра вибраций исследуемого двигателя с эталонными спектрами вибраций нового двигателя опознавать причины неисправностей двигателя и давать им количественную оценку. Так, например, с помощью комбинированного электронного прибора ЭМДП-2 можно ориентировочно определять зазоры между поршнями и цилиндрами двигателей, температуру воды и масла, частоту вращения коленчатого вала, угол опережения начала подачи и продолжительность впрыска топлива.

Анализ содержащихся в картерном масле примесей. Весьма перспективен и точен метод общего диагностирования технического состояния двигателя по анализу попадающих в масло продуктов изнашивания его деталей. При этом используют колориметрические, полярографические, магнитоиндукционные, радиоактивные и спектральные способы.

При установившемся процессе изнашивания количество поступающих в масло продуктов изнашивания деталей двигателя стабилизируется и может быть количественно и качественно определено для каждого типа двигателя. Увеличение количества какого-нибудь элемента по сравнению со среднестатистическими указывает на повышение скорости изнашивания определенной группы деталей.

При отсутствии специальной диагностической аппаратуры моторное масло в полевых условиях контролируют с помощью планшета (рис. 66). При этом 3…4 капли нагретого до температуры 60…80 °С масла наносят на листок белой фильтровальной бумаги и через 10 мин замеряют диаметры образовавшихся колец и подсчитывают их среднее значение.

Динамический метод — наиболее прогрессивный. Он позволяет оценить мощность двигателя по переходным характеристикам разгона и выбега и выполнить диагностические операции по отысканию дефектов.

При свободном разгоне в двигателе, работающем на холостом ходу, резко увеличивают подачу топлива до максимума. За время нарастания частоты вращения коленчатого вала измеряют в определенный момент ускорение разгона ер и умножают его ‘значение на соответствующее значение приведенного момента инерции 1, т. е. Mк = I • εр.

Чем больше крутящий момент двигателя, тем больше будет угловое ускорение за время разгона. На этом основано определение его энергетических показателей.

Эффективную мощность при известных крутящем моменте и частоте вращения рассчитывают по формуле Ne = Мкn/9550, где Ne — мощность, кВт; Мк — крутящий момент, Н • м; n — частота вращения, мин-1.

В режиме свободного выбега у двигателя, работающего на максимальной частоте вращения холостого хода, резко выключают полностью подачу топлива и в процессе затухания частоты вращения измеряют отрицательное ускорение коленчатого вала εe.

Момент сопротивления двигателя в этом случае будет Мc = Iεв.

При динамическом методе мощность измеряют с помощью приборов ИМД-2М или ИМД-Ц как в полевых, так и стационарных условиях.

Бестормозной метод проверки (отключением цилиндров) основан на использовании мощности механических потерь в выключенных цилиндрах в качестве нагрузки на работающие цилиндры.

Дизель предварительно прогревают до нормальной температуры охлаждающей жидкости и масла в картере. Затем устанавливают максимальную частоту вращения холостого хода, выключают три цилиндра (для четырехцилиндрового двигателя) и измеряют с помощью тахометра частоту вращения вала отбора мощности при работе на одном цилиндре. Зная передаточное число от дизеля к валу отбора мощности, определяют частоту вращения коленчатого вала при работе на каждом цилиндре, а затем подсчитывают среднюю частоту вращения по формуле: nср = (n1 + n2 + n3 + n4)/4, где n1, n2, n3, n4 — частота вращения при работе на отдельных цилиндрах.

Эффективная мощность дизеля: Ne = Neн — А(nном — nср), где Neн — номинальная мощность дизеля; А — коэффициент пропорциональности, постоянный для данного двигателя; nном — номинальная частота вращения коленчатого вала при работе на одном цилиндре.

Цилиндры выключают, ослабляя гайки штуцеров трубок топливного насоса или специальными отключателями.

Двигатели с шестью цилиндрами проверяют при двух работающих цилиндрах с дополнительной догрузкой, чтобы вывести их на номинальный скоростной режим. Для догрузки можно использовать шестеренный гидронасос путем дросселирования масла в гидросистеме подъемного механизма трактора либо его можно догрузить за счет дросселирования выпускных газов, установив специальную заслонку на выпускной трубе. Противодавление на выпуске должно быть в пределах 0,06. 0,08 МПа.

Тормозной метод измерения мощности двигателей основан на применении специальных нагрузочных устройств — тормозных стендов.

Тормозные стенды бывают механические, гидравлические, воздушные и электрические. Наибольшее применение в сельском хозяйстве находят электрические тормозные стенды с машинами переменного тока, которые могут работать как в режиме генератора (для торможения), так и в режиме двигателя (для обкатки и прокручивания двигателя внутреннего сгорания). Применяют их в стационарных условиях.

Для контроля дизеля непосредственно на тракторе используют стенд КИ-4935. Стенд монтируют стационарно на фундаменте и через вал отбора мощности подключают к нему дизель трактора. В этих условиях можно измерить мощность, расход топлива дизелем, а также провести более углубленное диагностирование.

Читайте также:  Почему расход масла зимой больше чем летом

Если мощность и расход топлива не соответствуют техническим требованиям, то проводят более углубленную проверку дизеля с тем, чтобы определить причины неисправностей. При этом необходимо вначале выполнять малотрудоемкие проверки наиболее вероятных неисправностей в тех системах и механизмах, которые в наибольшей мере влияют на обобщенные показатели, т. е. на мощность и расход топлива.

25 Диагностирование кривошипно – шатунного механизма

Кривошипно-шатунный механизм включает коленчатый вал с шатунами и коренными подшипниками, шатуны со втулками, поршневые пальцы, маховик и цилиндропоршневую группу.

Для оценки технического состояния подшипников коленчатого вала используют способы, основанные на определении следующих диагностических параметров: давления масла в главной масляной магистрали; количества масла, протекающего в единицу времени; шумы, стуки, возникающие от ударов в сопряжениях при работе двигателя; стуки, возникающие от соударения деталей в результате искусственного перемещения поршня и шатуна на величину зазоров в сопряжениях при неработающем двигателе. Широко распространено прослушивание двигателя во время его работы. Такое диагностирование является субъективным и зависит от слухового аппарата и опыта диагноста.

Рабочие качества кривошипно-шатунного механизма можно оценить методом измерения давления масла, определению характерности стуков и замеру зазоров в определенных сопряжениях коленчатого вала.

Измерение давления масла

Давление масла проверяется с помощью прибора, состоящего из манометра, соединительного рукава с накидной гайкой и ниппелем и демпфера, сглаживающего пульсацию масла во время замера давления. Для снятия показаний давления в главной магистрали, прибор подсоединяют к корпусу масляного фильтра, разъединив его, предварительно, с трубкой штатного манометра. Для проверки давления следует последовательно следующие операции:

— подсоединить к корпусу масляного фильтра измерительное устройство;

-запустить и прогреть двигатель до стандартного теплового состояния;

-зафиксировать давление масла в главной магистрали при холостом ходе, на момент устойчивого и номинально частотного вращения коленчатого вала.

Системы диагностики двигателей внутреннего сгорания

Диагностирование двигателей занимает одно из основных мероприя­тий в проверке состояния машин и их элементов и в устранении возмож­ных в двигателях неисправностей, продлевая тем самым срок безотказ­ной работы машин.

Установленные на базовых тракторах дорожно-строительных машин двигатели внутреннего сгорания работают в исключительно неблагопри­ятных условиях: высокая запыленность среды, нередко тяжелые клима­тические условия, специфичность условий технического обслуживания и хранения машин, резко меняющийся характер нагрузок и т. п. Так, час­тицы пыли, попадая в цилиндры двигателей, а также в топливо, масло, рабочую жидкость гидросистем, вызывают интенсивный износ трущихся поверхностей, что ухудшает работоспособность двигателей и машин в целом.

Как показал опыт эксплуатации дорожно-строительных машин, к основным причинам быстрого износа двигателей и более частых отказов в их работе по сравнению с другими элементами машин, помимо абра­зивного износа, относятся несоблюдение правил эксплуатации и хране­ния машин; подсос запыленного воздуха во впускной трубопровод и несвоевременное обслуживание воздушных, масляных и топливных фильтров; холодный пуск двигателей и несоблюдение нормального топ­ливного режима их работы; применение несоответствующих топлив и смазочных материалов; несвоевременная регулировка топливной аппа­ратуры; несвоевременный и некачественный р.емонт двигателей.

Рекламные предложения на основе ваших интересов:

К причинам, влияющим на повышенный износ двигателей, относит­ся также значительная напряженность их работы, характеризуемая продолжительностью работы под нагрузкой, числом включений и выключе­ний навесных, прицепных и других механизмов машин, частотой вклю­чений и выключений самих двигателей.

Двигатели дорожно-строительных машин большую часть времени работают под нагрузкой. Так, из общего рабочего времени непосредст­венно под нагрузкой находятся двигатели бульдозеров – 0,65-0,75; скреперов – 0,65-0,75; автогрейдеров – 0,55 – 0,65; погрузчиков – 0,70-0,80; кранов 0,60-0,70.
Значительная напряженность работы двигателей приводит также к повышенным давлениям в сопряжениях и к появлению ударных нагру­зок, что снижает усталостную прочность материала деталей.

Если двигатель работает без перегрузки, интенсивность его износа возрастает примерно пропорционально увеличению нагрузки, если же двигатель работает со значительной нагрузкой, к тому же неравномер­ной, сопровождающейся рывками, износ протекает очень быстро. Поэто­му следует стремиться к тому, чтобы при выполнении машиной харак­терных для нее технологических операций двигатель ее был нагружен равномерно (на регулярном участке скоростной характеристики), а пе­реход к более интенсивной нагрузке (корректорный участок) протекал по возможности кратковременно.

Согласно данным эксплуатации ресурс двигателей, установленных на дорожно-строительных маЩинах, относительно незначителен и нахо­дится в пределах 3000—4000 ч (редко до 6000 ч) до первого капитально­го ремонта и не более 2000—3000 ч от первого до второго капитального ремонта.

Диагностирование двигателей, как правило, бывает комплексное, включающее эксплуатационное и функциональное диагностирование. Общая оценка двигателя дается по затрате времени на его пуск и дымности отработавших газов (время пуска прогретого двигателя не долж­но превышать 3 мин в летнее время и 10 мин в зимнее, а отработавшие газы двигателя должны быть бесцветными). Диагностирование двига­теля начинают с проверки его мощности и экономичности работы. Для диагностирования двигателя применяют тормозные устройства, а также ряд приборов и установок.

Следует отметить, что неисправности в работе двигателей внутрен­него сгорания возникают главным образом из-за нарушения тепловых и нагрузочных режимов работы (особенно перегрузок), применения не­качественных топлив и смазочных материалов, работы в условиях за­грязненной и запыленной среды.

Цилиндропоршневая группа. Основными признаками неудовлетво­рительной работы цилиндропоршневой группы могут быть чрезмерный прорыв газов в картер, шум и стуки в сопряжениях. Причинами разбор­ки этой группы являются износ подшипников коленчатого вала, эллип- сность и конусность его шеек, износ поршней, износ и поломка поршне­вых колец.

Для определения наличия прорывающихся из камеры сжатия двига­теля газов, которые попадают в его картер, служит прибор расхода газа (расходомер) КИ-4887-11 (рис. 7.1). Принцип действия этого прибора основан на зависимости количества газов, проходящих через дроссель­ный расходомер, от площади проходного сечения дросселирующего от­верстия при заданном перепаде давления в дифференциальном мано­метре. Прибором (газорасходомером) выявляют состояние каждого ци­линдра двигателя.

Расход газов определяют в период работы двигателя на номинальной частоте вращения холостого хода и при нормальном тепловом режиме. Предварительно после пуска и кратковременной работы на холостом ходу двигатель должен быть прогрет до температуры 65-90 °С. После это­го двигатель останавливают, закрывают пробками отверстия сапуна и масломерной линейки, заливают наполовину в дифманометр воду, вы­винтив также пробку из канала (пробку не ставят до конца измерений). Затем полностью открывают дросселирующее отверстие, поворачи­вая при этом против часовой стрелки втулку за маховичок и дрос­сель за наружную втулку. После этого устанавливают эжектор за выхлопную трубу, а конусный наконечник вставляют в отверстие маслозаливной горловины. Снова запускают двигатель и устанавли­вают номинальную частоту вращения.

Рис. 7.1. Прибор КИ4887:
а — устройство; б – схема работы; 1 – впускной патрубок; 2 — калиброванное отверстие; 3 — кор­пус; 4 — шкала расходов; 5 — пружина; 6 — вы­пускной патрубок; 7 – дроссель; 8, 9 и 10 – жидко­стные каналы манометров; 11 — неподвижная втул­ка; 12 – подвижная втулка; 13 — дросселирующее отверстие; 14 – заслонка; 15 – эжектор; 16 – выхлопная труба; 17 – наконечник; 18 – маслоза- ливная горловина

Удерживая прибор в вертикальном положении и поворачивая втулку дросселя, устанавливают на одном уровне воду в левом и в правом каналах манометра. Затем, медленно поворачивая втулку за махо­вичок по часовой стрелке, добиваются такого положения, при котором уровень воды в канале был бы на 15 мм выше уровня в канале. Если после этого уровни в каналах окажутся разными, их выравнива­ют. После этого по шкале прибора определяют расход газов. Если этот уровень достиг предельного значения, которое указано в табл. 7.1, то цилиндропоршневая группа нуждается в ремонте.

Проверку цилиндров двигателя на количество прорывающихся газов можно определить компрессиометром КИ-861, вставив его на ме­сто вывернутой форсунки. Поставив прибор, открывают выпускной вен­тиль и проворачивают двигатель посредством пускового его двигателя или стартером при выключенной подаче топлива и отключенном деком­прессоре, после чего закрывают выпускной вентиль компрессиометра и наблюдают за стрелкой манометра. При остановке стрелки манометра записывают показания манометра и открывают выпускной вентиль. Таким же путем проверяют давление в других цилиндрах. Если разница между показаниями давления в каком-либо цилиндре и средним значени­ем компрессии основных цилиндров будет превышать 0,2 МПа, то такой цилиндр неисправен.Рассмотренный принцип проверки пригоден для измерения неплот­ностей клапанов газораспределения. Для этого применяются тот же при­бор КИ-4887-11 и компрессорно-вакуумная установка. Перед проверкой воздушный фильтр отсоединяют от впускного трубопровода, а поршень проверяемого цилиндра устанавливают в положение верхней мертвой точки (в.м.т.). После этого поворачивают коленчатый вал против хода на 90° (впускной и выпускной клапаны цилиндров при этом должны быть закрыты).

Читайте также:  Что нужно чтобы собрать машину с нуля

Сжатый воздух от компрессора или компрессорно-вакуумной установки подается в камеру сгорания через отверстия фор­сунки (отверстия под форсунками непроверяемых цилиндров должны быть закрыты) под постоянным избыточным давлением 0,2 МПа, под­держиваемым и контролируемым редукционным клапаном. Из камеры сгорания какая-то часть этого воздуха прорывается в картер, а какая-то часть через неплотности клапанов — во впускной трубопровод. Количе­ство воздуха, прорвавшегося через неплотности клапанов, замеряется по газовому расходомеру. При этом предельные значения расхода картерных газов могут быть приня­ты по паспортным данным для диагностируемых двигателей. В ча­стности, для таких двигателей, как СМД-14А, СМД-14НГ, Д-130, Д-160, ЯМЗ-2Э8НБ, расход картерных га­зов при работе на холостом ходу принимается по данным табл. 7.1.

Сравнивая результаты провер­ки с приведенными данными, оце­нивают состояние компрессионных колец, поршней и гильз и приходят к заключению о возможности продолжения работы двигателя или пере­дачи его в ремонт. При этом сравнительной оценкой является расход газов: если их расход при отключенном цилиндре отклоняется от средне­го в сравнении с другими цилиндрами, также отключенными, более чем на 0,33 мм3/с, то в проверяемом цилиндре возможны износы, поломки и зависание поршневых колец.

Топливная система. Основными признаками неудовлетворительной работы топливной системы могут быть трудный запуск двигателя, не­устойчивая его работа, дымность отработавших газов. Причиной разбор­ки этой системы является износ деталей топливного насоса, фильтрую­щих элементов, плунжерных пар, форсунок и топливоподкачивающего насоса (помпы).

Проверку начинают с топливного насоса и основных его деталей – плунжерных пар, используя для этой цели приспособление КИ-4802.

Приспособление КИ-4802 (рис. 7.2) состоит из: манометра на дав­ление 0-40 МПа, топливопровода, корпуса, внутри которого разме­щен предохранительный клапан для манометра, секундомера.

Рис. 7.2. Проверка герметичности топливной системы топливного на­соса с применением приспособления КИ-4802

Износ плунжерной пары насоса проверяют по давлению, развиваемо­му ею при пусковых оборотах коленчатого вала. При проверке накид­ную гайку топливопровода приспособления навинчивают на штуцер высокого давления проверяемой секции, после чего включают подачу топлива и, прокручивая коленчатый вал пусковым устройством, сле­дят за положением стрелки манометра. Как только будут видны колеба­ния стрелки манометра, выключают подачу топлива и, плавно подавая топливо, снова повышают давление до 25 МПа для двигателей с разде­ленными камерами сгорания (Д-130, Д-160 и др.) и до 30 МПа для двигателей с неразделенными камерами сгорания. Если давление сжатия окажется менее 1,45 МПа для СМД-14А, СМД-14НГ, для Д-130, Д-160 -1,3 МПа и для ЯМЗ-2Э8НБ — 1,4 МПа, плунжерные пары подлежат замене.

Следующей операцией на этом приспособлении является проверка плотности прилегания нагнетательных клапанов к опорным седлам. Прекратив прокрутку двигателя и наблюдая за показаниями стрелки манометра, измеряют время падения давления (для каждого из клапа­нов) от 15-10 МПа. Если это время будет менее 10 с, нагнетательные клапаны подлежат замене. При недостаточной герметичности запорных конусов нагнетательных клапанов топливо будет вытекать из штуцеров.

В процессе эксплуатации дизельных двигателей ухудшается качество распыления топлива форсунками (изменяются направление и дальность подаваемой струи и др.). Возникает это вследствие снижения давления начала впрыска, попадания воды и грязи в топливо, износа или закоксо- вывания распылителя, неправильной сборки и крепления форсунок на двигателе.

Во время работы форсунок изнашиваются сопрягаемые поверхно­сти опорных витков их пружин и другие детали, воспринимающие давле­ние, вследствие чего уменьшается давление начала впрыска топлива, увеличивается подъем иглы распылителей, повышается пропускная спо­собность форсунок, возрастает угол опережения впрыска топлива в ци­линдры двигателя, соответственно увеличивается и расход топлива. В результате неравномерного износа отдельных форсунок повышается неравномерность подачи топлива в цилиндры. При износе подтекают и закоксовываются распылители, нарушается форма конусов распыления топлива и значительно увеличивается его расход. Изнашиваются также направляющие части игл и корпуса распылителей, что в свою очередь приводит к подтеканию или течи топлива. Плотность соединений корпу­сов распылителей и форсунок нарушается также из-за коррозий торцо­вых поверхностей или в результате неправильной сборки форсунок. Рас­пылители деформируются преимущественно из-за перегрева и заедания игл, прорыва газов из-под прокладок при перекосах, которые могут воз­никнуть при неравномерной затяжке гаек крепления форсунок.

Состояние форсунок проверяют с помощью максиметра или при­бора КИ-562, входящего в комплект передвижной диагностической установки.
При проверке форсунок посредством максиметра последний уста­навливают на одну из секций топливного насоса и подключают прове­ряемую форсунку к максиметру (рис. 7.3,а), после чего затягивают его пружину приблизительно до давления 20 МПа, включают рычагом по­дачи топлива поступление топлива и, прокручивая двигатель, ведут на­блюдение за проверяемой форсункой. Как только из форсунки начнет поступать топливо, ослабляют затяжку пружины максиметра, продол­жая это до тех пор, пока не начнется впрыск топлива максиметром. При этом давление, при котором выполняются проверка и регулировка, должно быть у двигателей Д-130 и Д-160 20,5—21,0 МПа.

Рис. 7.3. Схема проверки работы форсунок:
а — по максиметру; 6 — по эталонной форсунке; 1 — форсунка; 2 — топливопро­вод; 3 — максиметр; 4 – трубка с гайкой; 5 — секция топливного насоса; 6 – эта­лонная форсунка; 7— тройник-

Проверку и регулировку форсунок на давление впрыска выполня­ют также и по эталонной форсунке, отрегулированной заранее на наруж­ное давление впрыска, обеспечивающее хорошее распыливание топлива (рис. 7.3, б). Для этого эталонную форсунку и проверяемую форсунку присоединяют к секции насоса через тройник. При проверке ры­чаг декомпрессора ставят в положение “Пуск”, а рычаг механизма по­дачи топлива — в положение максимальной подачи. Непроверяемые фор­сунки при этом должны быть отсоединены от секций для того, чтобы исключить поступление топлива в цилиндры в момент проверки форсун­ки. Вращая вал двигателя пусковым двигателем через редуктор, можно проверить давление впрыска топлива форсункой. Если у проверяемой форсунки топливо впрыскивается раньше, чем у эталонной, необходимо отвернуть колпак форсунки, отвернуть также ограничитель подъема гайки на несколько оборотов, ослабить переходную гайку и завернуть регулировочный винт, сжав пружину форсунки до давления, при кото­ром впрыск топлива проверяемой форсунки будет происходить несколь­ко позже впрыска топлива эталонной форсункой. После этого медлен­ным вывертыванием регулировочного винта проверяемой форсунки добиваются одновременнд впрыска топлива обеими форсунками.

Более совершенный способ проверки форсунок выполняют на при­боре КИ-562 (рис. 7.4). Прибор состоит из: корпуса, механизма при­вода плунжера с рычагом, присоединительного штуцера с маховичком, распределителя с запорным вентилем, манометра, топливного бачка и глушителя. Внутри корпуса находятся плунжерная па­ра и нагнетательный клапан топлив­ного насоса. Топливо в проверяе­мую форсунку и манометр при испытании нагнетается рычагом. Запорный вентиль прибора служит для отключения полости форсунки при проверке качества распылива- ния топлива.

Перед проверкой форсунки должны быть тщательно очищены и промыты сначала в бензине, а‘затем в дизельном топливе. После этого их устанавливают в приспособление и производят проверку в последо­вательности, рассмотренной выше. Прибор КИ-562 заменяется более совершенным прибором КИ-15706.

Состояние топливоподкачивающего насоса (помпы) проверяют при­бором КИ-4801 или манометром. Системы питания дизельных двига­телей комплектуются двумя типами приводных гопливоподкачиваю- щих насосов — шестеренчатыми и поршневыми. Шестеренчатые насосы устанавливают в системах питания таких двигателей как Д-ДЗО, Д-160, а поршневые – в системах двигателей СМД-14А, СМД-14НГ, ЯМЗ-2Э8НБ.

Причинами снижения давления и производительности подкачиваю­щего насоса шестеренчатого типа являются значительный торцовый за­зор между шестернями и плитой корпуса; большой зазор между верши­нами зубьев шестерен и стенками корпуса; износ посадочных мест под втулку и ось ведомой шестерни; износ бронзовых втулок, трещины, забоины и риски на сопрягаемых дизелях; износ валика и корпуса саль­ника, а также резьбовых соединений.

Читайте также:  Мотоблок урал умпо замена двигателя

Причинами снижения давления и производительности подкачиваю­щего насоса поршневого типа являются увеличение зазора между порш­нем и отверстием корпуса насоса; увеличение зазора между стержнем толкателя и корпусом (дефект, вызывающий значительную утечку топ­лива через дренажное отверстие, а при больших износах — попадание топ­лива в картер топливного насоса и недопустимо высокие потери топли­ва) ; нарушение герметичности всасывающих и нагнетательных клапанов и их гнезд; потеря упругости пружины поршня. Подкачивающий насос поршневого типа может иметь и такие дефекты, как: износ деталей толкателя, износы корпуса и поршня, нарушение посадки клапана, из­нос поршня и цилиндра насоса ручной подкачки, потеря упругости пру­жин поршня, клапанов и толкателя.

Рис. 7.4. Прибор КИ-562 для про­верки форсунок

Показателями исправности топливоподкачивающих насосов явля­ются: у насосов шестеренчатого типа топливо из подводящей трубки к фильтру тонкой очистки поступает в виде сплошной непрерывной струи; у насосов поршневого типа топливо поступает в виде пульсирую­щей струи.

Давление, развиваемое насосами, проверяют по манометру, входя­щему в состав прибора КИ-4801. Это давление перед фильтром должно быть не менее: у шестеренчатого насоса 0,06—0,07 МПа; у поршневого насоса 0,08-0,09 МПа.

Если давление ниже приведенных значений, производят регулировку редукционного клапана. Если регулировка не обеспечивает повышения давления, топливоподкачивающий насос заменяют.

Система смазывания двигателя. Показателями технического состоя­ния системы смазывания являются давление масла в магистрали и его температура, находящиеся (при исправном двигателе) в прямой зависи­мости друг от друга.

После пуска двигателя, когда двигатель и масло находятся в холод­ном состоянии, из-за высокой вязкости масла давление в магистрали двигателей Д-130 и Д-160 может достигать 0,4-0,5 МПа, а в отдельных двигателях (например, ЯМЗ-2Э8НБ) 0,8-1,0 МПа; по мере прогрева двигателя, когда температура двигателя и масла возрастает, вязкость масла снижается, что ведет к уменьшению давления в системе. Оценка приведенных показателей возможна при исправном состоянии масляно­го манометра и дистанционного термометра, установленных на щитке приборов или диагностической установки.

Кроме технического состояния агрегатов системы смазывания, на давление и температуру масла влияют также и другие факторы: сте­пень изношенности сопряжений кривошипно-шатунного механизма, со­стояние системы охлаждения, тепловой и нагрузочный режимы двига­теля, качество применяемого масла.

Для основных двигателей, применяемых для базовых машин буль­дозеров, скреперов, грейдеров, должны применяться моторные масла, приведенные в табл. 7.2.

При нормальных режимах работы двигателя и при применении вы­сококачественного картерного масла (в соответствии с паспортными данными) причиной высокой или низкой температуры масла могут быть также неправильная установка переключателя “зима-лето”, “лето-зима” или неисправности клапана-термостата, так как при износе этого прибора или поломке его пружины холодное масло, циркулируя через радиатор, будет иметь пониженную температуру, а давление в си­стеме, наоборот, будет повышенным.

Наиболее частыми причинами низкого давления масла в магистрали являются чрезмерный износ сопряжений кривошипно-шатунного меха­низма, низкая производительность масляного насоса и разрегулировка или износ сливного и предохранительного клапанов.

При неисправном перепускном клапане в магистраль может посту­пать загрязненное масло, что ведет к усиленному износу двигателя. По­добное явление вызывает также загрязнение или неисправности фильт­ров очистки.

Системы смазывания проверяют диагностическим прибором КИ-4858 (рис. 7.5). При этом определяют производительность масляного насоса, а также давление открытия предохранительного, перепускного и сливного клапанов системы. Этим прибором можно проверять также правильность показаний жидкостного манометра, установленного на щитке приборов.

Рис. 7.5. Прибор КИ-4858 для про­верки системы смазывания двига­телей

Прибор КИ-4858 представляет собой дроссельное устройство, кото­рое подключают к системе смазывания двигателя. Манометр прибора предназначен для определения давления в главной масляной магистрали двигателя и проверки правильности показаний рабочего манометра на щитке приборов машины. Подключается манометр штуцером. Мано­метр предназначен для показания давления масла в магистральной ли­нии масляного насоса перед выходом в дроссельный расходомер. Этот манометр и входная полость дросселя-расходомера подключаются к на­гнетательной линии до масляных фильтров штуцером. Манометр, установленный на выходе из дросселя-расходомера перед нагрузоч­ным дросселем, предназначен для определения величины противодавле­ния, создаваемого нагрузочным дросселем. Выходная полость на­грузочного дросселя подключается к нагнетательной линии (до масля­ных фильтров) штуцером IV. Дрос­сель-расходомер в этом приборе предназначен для определения про­изводительности масляного насоса при давлении масла на входе и выходе из насоса, устанавливаемом по показаниям манометров.

Производительность насоса отсчи- тывается по шкале дросселя-расходомера. Нагрузочный и сливной дроссели предназначены для созда­ния необходимого противодав­ления масла на выходе из дрос­селя-расходомера. При недостаточности давления прикрывают нагрузоч­ный дроссель, а при избыточности давления открывают сливной дрос­сель. Избыточное масло сливают в маслозаливочную горловину двига­теля через рукав, присоединенный к штуцеру. Для определения поло­жения плунжеров в корпусах дросселей-расходомеров имеются указатели с надписью “открыто”, “закрыто”.

Система охлаждения. В процессе работы двигателя температура охлаждающей жидкости в системе охлаждения не должна быть выше 80— 95 С, в противном случае требуется проверка ее состояния. Состояние системы охлаждения характеризуется накипью на поверхностях нагрева, герметичностью, состоянием паровоздушного клапана, а также степенью натяжения ремня вентилятора.

Часто наличие накипи в системе охлаждения определяют по темпера­туре наружной поверхности головки цилиндров и блока цилиндров в наиболее напряженных их местах. Однако этот способ неточен и не дает удовлетворительных результатов, так как температура наружной поверх­ности зависит от нагрузки двигателя, угла опережения впрыска топлива и др. Герметичность системы охлаждения проверяют двумя способами — внешним осмотром при работе двигателя и подачей сжатого воздуха в систему.

При проверке системы каждый из поршней двигателя (поочередно) устанавливают в верхнюю мертвую точку (в.м.т.) на такте сжатия. За­тем посредством компрессора сжатый воздух под давлением 0,5 МПа через отверстие для форсунки подается в камеру сгорания. При этом наблюдают за поверхностью охлаждающей жидкости (воды или другой жидкости) в верхней части радиатора. При неисправной головке цилинд­ров или ее прокладке из охлаждающей жидкости-системы будут выхо­дить пузырьки воздуха. Указанную операцию поочередно выполняют в отношении всех цилиндров двигателя.

Затем проверяют герметичность соединений системы охлаждения. Для этого плотно закрывают заливную горловину радиатора специаль­ной насадкой (приспособлением) для подачи сжатого воздуха под дав­лением 0,15 МПа и включают секундомер прибора. Если падение давле­ния будет превышать 0,01 МПа за 10 с, система охлаждения неисправна (наличие течи из системы). Действие паровоздушного клапана системы проверяют по давлению начала открытия парового и воздушного клапа­нов при падении сжатого воздуха.

Как уже отмечалось, неисправность системы охлаждения может быть из-за проскальзывания клиноременной передачи вентилятора. Натяжение ремней вентилятора системы охлаждения на их буксование проверяют по величине их прогиба в средней части. В настоящее время проверка степени натяжения ремней выполняется приспособлением КИ-8920.

Величина прогиба ремней привода вентилятора системы охлажде­ния двигателей приведена в табл. 7.3.

Работу радиатора (при нормальной работе водяного насоса и венти­лятора) проверяют по разности температур воды на входе и выходе из радиатора. Если разность температур менее 10 °С, необходимо прочис­тить и промыть сердцевину радиатора как снаружи, так и внутри. Темпе­ратура воды в системе охлаждения во время проверки радиатора долж­на быть 85-95 °С.

Для очистки сердцевины радиатора снимают наружную решетку и облицовку, затем производят продувку сжатым воздухом, после этого промывают водой из насоса высокого давления из шланга с наконечни­ком. Находящуюся между пластинками и трубками радиатора грязь и другие отложения удаляют плоскими деревянными приспособле­ниями.

При работающем двигателе охлаждающая жидкость системы в лет­нее время за 8—10 мин должна нагреться до температуры 50—60 °С. Если это время будет больше указанного, в системе охлаждения появ­ляется значительная накипь.

Показателем неудовлетворительной работы системы охлаждения по избыточному отложению накипи является незначительная разность меж­ду температурой охлаждающей жидкости (в данном случае — воды) и масла у прогретого двигателя.

Оцените статью