Силовой схеме тяговых двигателей электровоза

Силовой схеме тяговых двигателей электровоза

Принципиальная силовая схема

Принципиальные силовые схемы электровозов выполняют разнесенным способом. Отдельные цепи схемы располагают горизонтально одна под другой — они образуют параллельные строки. Принципиальные схемы различных электровозов отличаются одна от другой прежде всего числом тяговых двигателей, которых может быть 8, 6 или 4. Кроме того, на построении схем сказываются наличие или отсутствие рекуперативного либо реостатного торможения, используемый способ перехода с одного соединения двигателей на другое, число ступеней ослабления возбуждения, способы защиты силовых цепей электровоза и др.

Контакты аппаратов на силовых схемах показывают в положении, соответствующем условиям их изображения, о которых было сказано на с. 26. Как уже было отмечено, контакты аппаратов, не имеющих отключенного положения, изображают для одного из положений, принятого за исходное (нормальное). К таким аппаратам силовой цепи относятся реверсоры, тормозные и групповые переключатели. Для реверсоров исходным считают положение «Вперед», для тормозных переключателей — положение тягового режима, для групповых переключателей — положение последовательного соединения тяговых двигателей.

Очередность замыкания и размыкания контактов аппаратов силовой цепи устанавливается при разработке схем. Замыкание и размыкание тех или иных контактов в заданной последовательности обеспечиваются благодаря включению в цепь управления электровоза катушек вентилей и других аппаратов.

Переключения в цепи управления, а следовательно, и в силовой цепи осуществляют с помощью специального аппарата — контроллера машиниста. Машинист, ставя главную рукоятку контроллера на ту или иную позицию, подключает провода цепи управления к источнику тока. При этом срабатывает определенный аппарат силовой цепи. Каждая позиция рукоятки контроллера фиксируется.

Для того чтобы выяснить, какие контакты контакторов замкнуты и какие разомкнуты при различных положениях рукоятки контроллера, т. е. для того чтобы проследить пути прохождения тока, силовую схему дополняют таблицей последовательности замыкания и размыкания контакторов. Простейшая таблица была дана на рис. 32. В действительности такая таблица гораздо сложней. В ней для каждого вида соединения тяговых двигателей (С, СП и П) указаны позиции рукоятки контроллера. Из таблицы видно, какие контакторы — индивидуальные, группового переключателя, ослабления возбуждения поля — замкнуты и какие разомкнуты на каждой позиции рукоятки контроллера. Пользуясь этой таблицей, можно узнать, в какой последовательности переключаются контакторы группового переключателя при переходе с одного соединения тяговых двигателей на другое.

Как же выглядит силовая схема электровоза? На рис. 48, а для примера показана несколько упрощенная схема электровоза ВЛ10 для 1-й позиции главной рукоятки контроллера машиниста. Элементы электрического оборудования, входящие в силовую схему, показаны условными графическими изображениями. Силовая схема имеет четыре горизонтальные строки. В верхних двух строках приведены элементы оборудования, относящиеся к секции I кузова, в нижней — к секции II. Силовые цепи секций I и II подключены друг к другу межкузовными соединениями. Безусловно, схема была бы нагляднее, если ее можно было бы выполнить в две строки, показав нижние две строки как продолжение двух верхних, как изображено на структурной схеме рис. 48, б. Но при этом пришлось бы расположить схему на вклейке, большей страницы книги, что вызывает ряд неудобств.


Рис. 48. Принципиальная силовая схема электровоза постоянного тока

Прежде чем рассмотреть прохождение тока в силовой цепи, отметим следующее: цифровые или буквенные обозначения элементов силовой схемы не такие, как в заводской схеме; элементы электрооборудования, имеющие рядом с обозначением цифру 1, размещены в секции I электровоза (кузова), а элементы, имеющие цифру 2, — в секции II; на схеме рис. 48 для упрощения приведены не все обозначения, а только использованные при описании. Некоторые цепи, не упоминаемые в описании, не показаны. Электрический ток из контактной сети проходит через один из поднятых токоприемников, например T1, крышевой разъединитель РК1, дроссель Др1, обмотку дифференциального реле РД, быстродействующий выключатель БВ, линейный конктактор 1-1 (в действительности их два для облегчения разрыва цепи), первую группу секций пускового реостата Р1-Р2, контакторный элемент 2-1 группового переключателя. Затем ток проходит через вторую группу секций пускового реостата Р3-Р4, шунт амперметра А, обмотку реле перегрузки РП1 в цепи тяговых двигателей I и II, нож отключателя ОДI-II, контакты PI-II реверсора, якоря двигателей I и II, контакты реверсора PI-II, контакты тормозного переключателя Т, обмотку возбуждения OBI двигателя I, контакты тормозного переключателя Т, обмотку возбуждения OBII двигателя II, контакты тормозного переключателя Т, нож отключателя двигателей ОДI-II.

Далее ток через замкнутый контакторный элемент 3-1 группового переключателя проходит в цепь двигателей III и IV, в которую включены реле перегрузки РП2, отключатели и другие аналогичные элементы, упомянутые при описании прохождения тока в верхней строке схемы. Цепь двигателей III и IV отличается от цепи двигателей I и II лишь наличием реле давления РД1.

В секцию II кузова ток проходит через замкнутый контакторный элемент группового переключателя 4-O (буква О означает, что контакторный элемент относится к групповому переключателю, общему для обеих секций кузова) и межкузовное соединение. Прохождение тока в силовой цепи секции II аналогично прохождению его в секции I. Силовая цепь замыкается на рельсы (землю), с которыми находятся в постоянном контакте колесные пары, через вторую обмотку дифференциального реле РД и токовые обмотки двух счетчиков электрической энергии Сч. На 1-й позиции рукоятки контроллера в цепь тяговых двигателей полностью введен пусковой резистор. Токопрохождение в силовой цепи на первой позиции рукоятки контроллера показано жирными линиями.

Отметим особенность силовой схемы, изображенной на рис. 48, отличающую ее от силовых схем электровозов постоянного тока других серий. На 1-й позиции рукоятки контроллера замкнуты контакты контакторов 5-1, 6-1, 5-2, 6-2, 7-1, 8-1, 7-2, 8-2, т. е. включена первая ступень ослабления возбуждения тяговых двигателей (55%), что противоречит ранее сказанному о том, что ослабление возбуждения применяют только на ходовых позициях (см. с. 71). Это вызвано следующим. В процессе эксплуатации первой партии электровозов ВЛ10 перегревалась часть секций пускового реостата. Для предотвращения этого на локомотивах последующих выпусков была уменьшена мощность этих секций путем увеличения числа параллельно включенных элементов. Однако это затруднило их размещение, в связи с чем пришлось уменьшить сопротивление пускового резистора на 1-й позиции. Следовательно, ток тяговых двигателей на 1-й позиции возрос сверх допустимого по условиям плавного трогания. При этом тяговые двигатели в соответствии с формулой (3) развивали бы больший вращающий момент и большее тяговое усилие. Чтобы сохранить первоначальное значение тягового усилия при увеличившемся токе, уменьшают магнитный поток Ф, а значит и вращающий момент двигателей, так как при пуске э. д. с. в якорях двигателей равна нулю и уменьшение потока возбуждения не сказывается на изменении силы тока I двигателей. На 2-й позиции прекращают ослабление возбуждения и сила тяги возрастает. На 3-й позиции включается контактор 9-2 и тем самым выводится ступень Р5-Р6 пускового реостата. Дальнейшее перемещение главной рукоятки контроллера вызывает ступенчатое уменьшение сопротивления пускового реостата; полностью она выводится на 16-й ходовой позиции.

Читайте также:  Если машина кушает масло что это

Переходя с одной реостатной позиции на другую, машинист, ориентируясь на показания амперметра А, следит за тем, чтобы ток двигателей не превышал допустимого по условиям сцепления. С целью предотвращения перегрева секций пускового реостата, рассчитанных на кратковременное включение, рукоятку контроллера задерживают на реостатных позициях не более 30 с. После того, как ручка контроллера будет установлена на пусковую позицию, машинист для увеличения скорости применяет четыре ступени ослабления возбуждения. С целью дальнейшего увеличения скорости движения поезда осуществляют переход на последовательно-параллельное соединение двигателей. Предварительно машинист должен перевести двигатели на режим полного возбуждения. Для этого сначала переводят рукоятку на 17-ю позицию, при этом в силовой цепи осуществляются переключения поэтапно в соответствии с рис. 38. Затем машинист с помощью рукоятки контроллера вновь ступенями уменьшает сопротивление пускового реостата, при этом увеличивается напряжение, подводимое к двигателям. На 27-й позиции выводится полностью реостат, эта позиция является ходовой. Затем машинист может использовать вновь четыре ступени ослабления возбуждения и скорость движения поезда еще более возрастет. Переведя рукоятку контроллера на 28-ю позицию, сняв предварительное ослабление возбуждения, осуществляют переход на параллельное соединение двигателей. На 38-й позиции пусковой реостат выведен — эта позиция ходовая.

При ведении поезда чаще всего используют параллельное соединение двигателей, применяя ослабление возбуждения. Если ток достигнет слишком большого значения, например, на крутом подъеме, переходят на более низкую ступень ослабления возбуждения или на полное возбуждение. В том случае когда необходимо значительно понизить скорость, машинист переводит рукоятку контроллера с 38-й на 27-ю или на 16-ю ходовую позицию.

В силовую цепь электровоза ВЛ10 (см. рис. 48, а) входят дифференциальное реле РД, реле перегрузки РП, реле боксования (на рис. 48 не показано), которые защищают силовую цепь в ненормальных режимах, а дроссель Др и конденсатор С необходимы для защиты от радиопомех. Сведения об их устройстве и действии приведены на с. 151 и 154.

В процессе работы может произойти повреждение одного из тяговых двигателей. Чтобы в этом случае поезд не остановился на перегоне, предусмотрена возможность работы электровоза с двумя отключенными двигателями. Отключают их ножами отключателей двигателей, например, при повреждении двигателя I ножами ОДI-II отключают двигатели I, II, и электровоз работает по аварийной схеме.

Для учета расхода электроэнергии установлены два счетчика. Счетчик Сч1 учитывает расход электроэнергии на тягу поезда и собственные нужды. В режиме рекуперации диск этого счетчика вращается в направлении, противоположном направлению его вращения в режиме тяги. Счетчик Сч2 предназначен только для учета рекуперируемой энергии.

Заканчивая рассказ об электровозах постоянного тока с тяговыми двигателями последовательного возбуждения, отметим, что для осуществления их пуска и регулирования частоты вращения требуется большое число индивидуальных и групповых контакторов. Например, только для получения различных соединений секций пускового реостата на электровозе ВЛ10 установлен 21 индивидуальный электропневматический контактор.

УСТРОЙСТВО ТЯГОВОГО ДВИГАТЕЛЯ

Тяговый двигатель электровоза, как и все двигатели постоянного тока, имеет следующие основные части: остов с поюсами, якорь, щеткодержатели и щетки, подшипниковые щиты (рис. 14). Конструктивные отличия тяговых двигателей от других электрических машин постоянного тока предопределены условиями их работы.

Размеры тягового двигателя ограничены габаритом — предельными очертаниями локомотива. Двигатели подвергаются значительным перегрузкам, тряске, ударам при прохождении колесных пар по неровностям пути, работают при температуре окружающей среды от +40 до — 50° С, в условиях больших колебаний напряжения в контактной сети. Очень трудно предотвратить проникновение в них пыли, влаги, снега.
Обеспечить длительную безотказную работу тяговых двигателей в таких условиях можно лишь при высоком качестве проектирования и изготовления, правильной эксплуатации и своевременном ремонте.

Якорь

У тягового двигателя якорь (рис. 15, а) состоит из сердечника, вала, обмотки и коллектора.

Сердечник собран из штампованных листов специальной электротехнической стали (рис. 15, б). Каждый лист изолирован от соседнего тонким слоем лака. Проще, казалось, было бы выполнить сердечник в виде сплошного цилиндра. Объясним, почему этого делать нельзя.
Когда якорь вращается, магнитные силовые линии пересекаются не только обмоткой, уложенной на нем, но и сердечником, вследствие чего в нем наводится э. д. с. Значения этой э. д. с. в точках сердечника, имеющих разные радиусы вращения, неодинаковы: чем ближе точки к поверхности, тем э. д. с. больше. Точки, лежащие ближе к поверхности сердечника, за одно и то же время проходят больший путь и пересекают большее число магнитных силовых линий, чем точки, расположенные недалеко от оси вращения. Под действием разности э. д. с, наведенных в сердечнике, возникают так называемые вихревые токи. Даже при небольшой разности э. д. с. вихревые токи могут быть значительными, так как электрическое сопротивление сплошного массивного цилиндра мало. Вихревые токи, проходя по сердечнику, нагревают его. На это бесполезно тратится электрическая энергия и тем самым снижается к. п. д. двигателя.
Избежать разности наведенных э. д. с. при вращательном движении якоря невозможно. Остается одно — увеличить электрическое сопротивление сердечника. Собирая сердечник из отдельных листов толщиной 0,3—0,5 мм, изолированных друг от друга, тем самым разделяют его на ряд проводников с малой площадью сечения и, следовательно, большим электрическим сопротивлением. Кроме того, увеличивают электрическое сопротивление стали, из которой изготовляют сердечники, добавляя в нее 1 — 1,5% кремния.
В сердечнике делают ряд круглых отверстий для пропуска воздуха, охлаждающего якорь, который нагревается теплом, выделяемым обмоткой при прохождении по ней тока, и не полностью устраненными вихревыми токами.
Валы якорей тяговых двигателей изготавливают из особой стали повышенного качества. И все же иногда приходится заменять «уставшие» валы. Поэтому листы сердечника собирают на специальной втулке, а не непосредственно на валу. Это позволяет при необходимости выпрессовывать вал из втулки, не разбирая сердечник, обмотку и коллектор.
Обмотку якоря укладывают в пазы его сердечника. Проводники обмотки соединяют один с другим в определенной последовательности, применяя так называемые лобовые соединения. Последовательность соединения должна быть такой, чтобы все силы взаимодействия, возникающие между проводниками с током и магнитным потоком, стремились вращать якорь двигателя в одну сторону. Для этого соединяемые проводники, образующие виток, должны быть расположены один от другого на расстоянии, примерно равном расстоянию между полюсами.
Начало и конец витка присоединяют к разным коллекторным пластинам в определенной последовательности, образуя таким образом обмотку якоря. Отдельные витки, составляющие обмотку, называют секциями.
Современные электрические машины постоянного тока, в том числе и тяговые двигатели, обычно делают многополюсными, т. е. они имеют не одну, а две, три и более пар полюсов. При этом проводники обмотки якоря могут быть соединены двумя способами, и в зависимости от этого получают обмотки двух типов — петлевую и волновую.
Показать обмотку якоря на чертеже в том виде, как ее выполняют в электрической машине, очень сложно. Поэтому для наглядности изображения полюса электрической машины и пластины коллектора, которые в действительности расположены по окружности, на рисунке изображают в виде развертки на плоскости. Это позволяет показать расположение проводников обмотки относительно полюсов магнитной системы, соединение проводников один с другим и с пластинами коллектора, а также соединение секций.

Читайте также:  Система охлаждения масла двигателя 402

Для получения петлевой обмотки (рис. 16, а) начало проводника 1 присоединяют к коллекторной пластине 1′, а конец его соединяют с началом проводника 2. Конец проводника 2 присоединяют к пластине 2′. Проводники 1 и 2 образуют одну секцию, имеющую форму петли. Поэтому обмотка и получила название петлевой. Далее начало проводника 3 соединяют с пластиной 2′, а конец — с проводником 4 и т. д., пока обмотка не замкнется, т. е. пока последний проводник не соединится с коллекторной пластиной 1′.
При волновой обмотке (рис. 16, б) начало проводника 1, расположенного под северным полюсом (полюс N) первой пары полюсов, присоединяют к коллекторной пластине 1′, а конец — к проводнику 2, как и в петлевой обмотке. Затем, в отличие от петлевой обмотки, конец проводника 2 через соответствующую коллекторную пластину 2′, расположенную уже не рядом с пластиной 1′, соединяют с проводником 3, находящимся под полюсом N следующей пары полюсов. Проводник 3 соединяют с про­водником 4, расположенным под полюсом той же пары полюсов, и через коллекторную пластину с проводником 5, находящимся под полюсом N первой пары полюсов, и так до тех пор, пока обмотка не замкнется. Секция обмотки этого типа имеет форму волны, вследствие чего обмотка и получила название волновой. В отличие от петлевой обмотки концы секции волновой обмотки присоединяют к несмежным коллекторным пластинам.
В большинстве тяговых двигателей первоначально применяли волновую обмотку. В современных тяговых двигателях большой мощности применяют петлевые обмотки . Обмотку якоря укладывают в пазы, выштампованные в листах стали, из которых собирают сердечник (см. рис. 15, б). В каждом пазу помещают стороны двух секций, так как обмотки двигателей обычно располагают в два слоя. Одну сторону секции укладывают в верхнюю часть одного паза, а другую — в нижнюю часть другого. При двухслойной обмотке облегчается соединение лобовых частей секции. Кроме того, все секции получаются одинаковыми, что упрощает технологию их изготовления.
Уложенную обмотку необходимо закрепить в пазах, иначе при вращении якоря она под действием центробежной силы будет вырвана из пазов. Закрепить ее можно, либо наложив бандаж на цилиндрическую поверхность якоря, либо поставив клинья в пазы (рис. 17, а, б).

Бандажи занимают по высоте меньше места, чем клинья, и ставить их проще. Однако в бандажах, выполненных из стальной проволоки, теряется энергия, поскольку они вращаются в магнитном поле. Не исключена и вероятность нарушения их пайки под действием тепла, выделяемого в обмотках двигателей и в самих бандажах. Кроме того, при больших окружных скоростях бандажи не обеспечивают необходимую прочность крепления. Крепление обмотки клиньями достаточно надежно, поэтому такой способ и получил преимущественное применение в мощных тяговых двигателях. Однако при этом высота паза, а следовательно, и диаметр якоря двигателя увеличиваются.
Раньше прямоугольные проводники обмотки якоря располагали вертикально (см. рис. 17, а). При расположении проводников, имеющих прямоугольное сечение, плашмя (см. рис. 17, б) не требуется места (по ширине паза) на изоляцию и улучшается отвод тепла от меди к боковым стенкам паза. Это позволяет улучшить теплоотдачу, а следовательно, уменьшить радиальные размеры сердечника и, кроме того, снизить добавочные потери в меди, так как уменьшаются вихревые токи. Так размещены обмотки в тяговых двигателях электровозов постоянного и переменного тока новых серий. Это позволило повысить мощность двигателей при заданных габаритных размерах. Однако монтаж такой обмотки сложней, чем обмотки, проводники которой расположены вертикально. Лобовые соединения обмотки якоря крепят только бандажами, которые выполняют из стеклоленты, пропитанной клеящими лаками . Такие бандажи не имеют недостатков, присущих проволочным бандажам.
Производство новых электроизоляционных материалов высокой прочности позволило создать (пока опытные) гладкие беспазовые якори, т. е. укладывать обмотки на гладкую цилиндрическую поверхность (рис. 17, в). Это снижает стоимость изготовления двигателей и расходы на содержание их в эксплуатации.
Коллектор (рис. 18) — один из основных и наиболее ответственных узлов тягового двигателя постоянного тока. Коллектор наиболее нагружен в электрическом отношении, и условиями его надежной работы ограничиваются предельные мощности тяговых двигателей . Диаметр коллектора современных тяговых двигателей превышает 800 мм, число пластин достигает 600.

Медные пластины коллектора имеют в сечении форму клина. Одна от другой они изолированы прокладками из коллекторного миканита. Миканит изготовляют из лепестков слюды, обладающей очень высокими электрической прочностью и теплостойкостью, а также влагостойкостью. Склеивают лепестки специальными лаками или смолами.
В нижней части коллекторные и изоляционные пластины имеют форму так называемого «ласточкиного хвоста». «Ласточкины хвосты» пластин и прокладок надежно зажаты между коробкой коллектора и нажимной шайбой, стянутыми болтами. Такое крепление обеспечивает сохранение строго цилиндрической формы коллектора, что очень важно, так как к поверхности коллектора все время прижимаются щетки. Стоит хотя бы одной пластине выйти за очертания окружности коллектора, как щетки начнут подпрыгивать, искрить, что может привести к повреждению двигателя. То же самое может произойти при недостаточно высоком качестве обработки коллектора, а также в случае образования на его поверхности вмятин и выступов.
От коробки и нажимной шайбы коллекторные пластины изолируют, прокладывая конусы и цилиндр, изготовленные из миканита. Коллекторные пластины имеют выступы, называемые петушками. В петушках сделаны прорези, куда впаивают концы секций обмотки якоря.
Во время работы двигателя щетки истирают поверхность коллектора. Миканит более износостоек, чем медь, поэтому в процессе работы поверхность коллектора может стать волнистой. Чтобы этого не произошло, изоляцию в промежутках между медными пластинами после сборки коллектора делают меньшей высоты — продороживают коллектор специальными фрезами.

Щетки и щеткодержатели

Через щетки, установленные в щеткодержателях, электрический ток подводится к об­мотке якоря тягового двигателя.
Щетки для тяговых двигателей изготовляют из графита, получаемого при нагреве в электрической печи сажи, кокса, антрацита. Такие щетки называют электрографитизированными. Изготовляя их, стремятся к тому, чтобы они имели высокое переходное сопротивление, низкий коэффициент трения, были упругими, износоустойчивыми.
Одна щетка обычно перекрывает несколько коллекторных пластин, что ухудшает коммутацию (объяснение этого термина будет дано ниже) двигателей. Однако если щетки и коллекторные пластины выполнить равными по ширине, то щетки получились бы очень тонкими и хрупкими. Кроме того, при прохождении большого тока необходимо обеспечить достаточную поверхность контакта между щетками и коллектором. Поэтому, чтобы получить необходимую площадь рабочей поверхности щеток при небольшой их ширине, пришлось бы щетку удлинить, а это привело бы к удлинению коллектора. Размеры же двигателя ограничены габаритом электровоза, и увеличение длины коллектора вызвало бы необходимость уменьшить длину сердечника якоря и проводников обмотки, что в свою очередь привело бы к снижению мощности двигателя.

Читайте также:  Тест драйв мерседес спринтер 515

Щеткодержатель (рис. 19) состоит из корпуса и кронштейна, корпус соединяют с кронштейном болтом. Для более надежного крепления и лучшего электрического контакта соприкасающиеся поверхности кронштейна и корпуса сделаны рифлеными. Щеткодержатели должны быть надежно изолированы от остова двигателя. Поэтому их кронштейны крепят к остову или подшипниковым щитам с помощью изоляторов.
Щетки прижаты к поверхности коллектора пальцами, соединенными с пружинами. Для улучшения контакта между щетками и коллектором применяют составные (разрезные) щетки.

Остов

У тягового двигателя остов (рис. 20) одновременно служит магнитопроводом, к нему крепят главные и дополнительные полюса. Остов (ярмо) должен оказывать минимальное сопротивление прохождению магнитного потока, поэтому его изготовляют из стали, обладающей хорошими магнитными свойствами.

В магнитной системе тяговых двигателей, установленных на электровозах переменного тока, пульсирующий выпрямленный ток вызывает дополнительные потери. Чтобы снизить их, в массивный остов часто впрессовывают вставку, набранную, подобно якорю, из отдельных листов.
На электровозах с опорно-осевым подвешиванием остову в поперечном сечении придавали почти квадратное очертание с несколько срезанными углами. Такая форма позволяла уменьшить размеры двигателя, что важно для размещения его на электровозе. Стремление к непрерывному снижению массы тяговых двигателей привело к применению остовов цилиндрической формы. К остову крепят главные и дополнительные полюса, щиты с роликовыми подшипниками, в которых вращается якорь электродвигателя, и другие детали; предусмотрены в остове люки для подвода и отвода охлаждающего воздуха. Остов имеет горловины, через которые в него устанавливают полюса, якорь и другие детали. В процессе эксплуатации электровоза приходится периодически проверять состояние коллектора и щеточного аппарата. Для этого в остове имеются смотровые люки, герметично закрываемые крышками.
Подшипниковые щиты. Ими плотно закрывают торцовые горловины остова с обеих сторон. Концы вала якоря закрепляют в подшипниках, размещенных в щитах. Поэтому щиты называют подшипниковыми. В современных тяговых двигателях применяют только роликовые подшипники качения, более надежные, чем шариковые и подшипники трения скольжения. Роликовые подшипники не требуют частого пополнения смазки и постоянного ухода.
При вращении вала тягового двигателя смазка может выбрасываться из подшипников. Чтобы избежать этого, на валу устанавливают специальные устройства, предупреждающие разбрызгивание и выбрасывание смазки — лабиринтные маслоуплотнители. Подшипниковые щиты предотвращают загрязнение частей двигателя и проникновение в него влаги.

Главные полюса

Они представляют собой сердечники, на которые надевают катушки обмотки возбуждения. Сердечники главных полюсов, как и якоря, собирают из отдельных листов стали. Зачем это делают? По катушке сердечника проходит постоянный магнитный поток, а сам сердечник неподвижен и, следовательно, вихревые токи в нем возникнуть не могут. Все это было бы так, если бы якорь имел гладкую поверхность. В действительности зубцы и впадины его сердечника, перемещаясь при вращении под полюсами, искажают магнитное поле и вызывают пульсацию магнитного потока, из-за чего в сердечнике полюса возникают вихревые токи. Вот и приходится набирать сердечник из тонких листов стали, т. е. выполнять шихтованным.
Чтобы обеспечить необходимое распределение магнитного потока по поверхности якоря, сердечнику (рис. 21, а и б) придают довольно сложную Т-образную форму: она определяется соотношением размеров ширины сердечника и его полюсного наконечника, формой воздушного зазора, наличием компенсационной обмотки, условиями размещения и закрепления ее и катушек главных полюсов, способом крепления сердечников к остову.

Тяговые двигатели электровозов постоянного тока имеют две или три пары главных полюсов, а на электровозах переменного тока — три пары полюсов.
Компенсационная обмотка, применяемая в тяговых двигателях пульсирующего тока и в мощных двигателях постоянного тока, служит для компенсации реакции якоря. Обмотку располагают в пазах наконечника главных полюсов (см. рис. 21, б) и соединяют последовательно с обмоткой якоря. В отечественных тяговых двигателях применена хордовая компенсационная обмотка (рис. 22) из мягкой прямоугольной медной проволоки, выполняемая катушками, которые можно устанавливать и снимать независимо от других обмоток. Крепят компенсационную обмотку в пазах клиньями.

Дополнительные полюса

Как и главные, эти полюса состоят из сердечников и катушек. Магнитный поток, необходимый для компенсации реактивной э. д. с, сравнительно невелик, вследствие чего дополнительные полюса имеют меньшие размеры, чем главные. Потери в их сердечниках, вызываемые пульсацией магнитного потока, незначительны, поэтому сердечники изготовляют сплошными. В машинах с тяжелыми условиями коммутации, а также в двигателях пульсирующего тока для уменьшения вихревых токов эти сердечники выполняют шихтованными.
Катушки дополнительных полюсов наматывают из полосовой меди. Число дополнительных полюсов всегда равно числу главных.
Остов, главные и дополнительные полюса образуют магнитную систему тягового двигателя. Магнитная система обеспечивает прохождение магнитного потока, его концентрацию в определенных частях двигателя.

Электрическая изоляция

Изоляция играет важную роль в обеспечении надежной работы любого электрического устройства, в том числе и двигателей. Изоляция тяговых двигателей подвергается значительному нагреву, воздействию влаги, перенапряжений, вибрации, поэтому она должна обладать достаточной электрической и механической прочностью, быть нагрево- и влагоустойчивой. Нагревоустойчивость — один из основных показателей качества изоляции, в зависимости от нее все электроизоляционные материалы делят на классы. Класс изоляции обозначается буквами латинского алфавита. В соответствии с ГОСТ 2582—81 «Машины электрические вращающиеся тяговые. Общие технические требования» в тяговых машинах используют изоляцию классов
В, F, Н, Р.
Применение изоляции высокого класса повышает надежность тягового двигателя, позволяет при тех же размерах реализовать большую мощность, допускать более высокие температуры нагрева его частей.
Где же применяют изоляцию в тяго­вых двигателях? Прежде всего в обмотке якоря (рис. 23): изолируют друг от друга медные провода, из которых выполнена эта обмотка,— витковая изоляция; каждую секцию изолируют от корпуса и одну от другой — корпусная изоляция. Корпусная изоляция от механических повреждений защищена покровной. Кроме того, секции, расположенные в одном пазу, имеют еще общую покровную изоляцию и прокладки, которые укладывают на дно паза, между секциями, а также между верхней секцией и клином. В катушках полюсов изолированными выполняют отдельные витки, слои витков и выводы, изоли­руют также всю катушку от остова двигателя.

Кронштейны щеткодержателей изолируют от корпуса двигателя с помощью фарфоровых изоляторов (см. рис. 19). Изоляцию коллекторных пластин относительно корпуса и одну от другой выполняют так, как показано на рис. 18.

Оцените статью