Схема зажигания одноцилиндрового двигателя

Виды, устройство и принцип работы системы зажигания

Система зажигания двигателя – это комплекс устройств, приборов и датчиков, необходимых для его запуска. Ее главной задачей является создание высокого напряжения для формирование искры, воспламеняющей топливовоздушную смесь, в точно определенный момент времени. Это обеспечивает правильный режим работы мотора, а потому от исправности системы зажигания зависит расход топлива, мощность и безопасность движения автомобиля.

Устройство и принцип действия типовой системы зажигания

С технической стороны система зажигания входит в комплекс электрооборудования двигателя. Конструктивно она состоит из следующих элементов:

  • Аккумулятор или другой источник питания. Он подает в сеть низкое напряжение 12 вольт.
  • Переключатель. При повороте ключа переключатель замыкается и низкое напряжение поступает в накопитель энергии.
  • Накопитель энергии. Бывает двух видов: индуктивный (катушка зажигания трансформаторного типа, преобразующая низкое напряжение в высокое до 30 тысяч вольт) и емкостной (конденсатор).
  • Блок управления аккумулированием и распределением энергии. В зависимости от типа системы зажигания это может быть прерыватель, транзисторный коммутатор или ЭБУ (электронный блок управления).
  • Распределитель. Этот узел может быть механическим или электронным. Он осуществляет снабжение определенных свечей энергией в заданный момент времени.
  • Провода цепи высокого напряжения. По ним поступает высокое напряжение к электродам свечей.
  • Свечи зажигания.

Работа системы зажигания основана на следующем принципе: при подаче в сеть низковольтного напряжения, происходит накопление и преобразование энергии, что затем распределяется по свечам, на электродах которых формируется искра, провоцирующая воспламенение топливовоздушной смеси.

Виды систем зажигания

В современном автомобилестроении системы зажигания классифицируют в зависимости от способа управления процессом. При этом выделяют три основных типа схем:

  • контактная (контактно-транзисторная);
  • бесконтактная (транзисторная);
  • электронная (микропроцессорная).

Характерные особенности контактной системы

Исторически контактная система является одной из первых и сегодня ее можно встретить лишь на старых моделях автомобилей. В таких конструкциях формирование высокого напряжения происходит в трансформаторной катушке, а распределение его на свечи реализуется механическим способом – замыканием и размыканием контактов цепи прерывателем-распределителем.

Устройство контактной системы зажигания

Помимо основных элементов, такие системы включают в себя центробежный регулятор опережения зажигания, необходимый для преобразования угла опережения зажигания относительно частоты вращения коленвала. Он представляет собой два груза, воздействующих на мобильную пластину, контактирующую с кулачковым механизмом прерывателя.

Угол опережения зажигания – определенное положение коленвала, при котором осуществляется подача высокого напряжения на свечи. В таком режиме зажигание происходит до момента достижения поршнем верхней мертвой точки, что позволяет обеспечить максимально эффективное сгорание топливовоздушной смеси.

Также в контактных схемах применяется вакуумный регулятор опережения зажигания, изменяющий угол опережения соответственно режиму работы (нагрузке) мотора. Он соединен с полостью, находящейся за дроссельной заслонкой, и при нажатии на педаль газа изменяет угол опережения в зависимости от величины разрежения.

При замыкании контактов низкое напряжение подается на первичную обмотку катушки, где аккумулируется энергия и в момент размыкания контакта происходит формирование высокого напряжения на вторичной обмотке. Затем энергия поступает к распределителю зажигания и далее на соответствующую свечу.

Если нагрузка на силовой агрегат повышается, увеличивается частота вращения вала прерывателя-распределителя, и грузы центробежного регулятора расходятся, изменяя положение пластины. Это способствует более раннему размыканию контактов, что увеличивает угол опережения. При снижении нагрузки на двигатель происходит обратный процесс.

В чем отличия контактно-транзисторной системы зажигания

Следующим поколением системы зажигания стала контактно-транзисторная, предполагающая установку в первичной цепи катушки транзисторного коммутатора. Он позволяет снизить силу тока в обмотке низкого напряжения, что повышает срок эксплуатации контактов.

Контактно-транзисторная система зажигания

За счет установки транзистора напряжение, поступающее на свечи, больше, чем в классической контактной системе на 30%. Зазор между электродами и, как следствие, длина искры при этом также больше, а значит возрастает и площадь контакта с топливовоздушной смесью, что способствует ее полному сгоранию. В контактно-транзисторной системе зажигания прерыватель воздействует не на катушку, а на коммутатор.

При повороте ключа через транзистор начинают проходить два типа токов:

  • управления;
  • основной ток первичной обмотки.

Когда контакты размыкаются, ток цепи управления исчезает, а транзистор запирается, препятствуя протеканию тока первичной обмотки. В этот момент магнитное поле формирует высокое напряжение на вторичной обмотке. Для ускорения запирания транзистора в контактной системе зажигания этого типа может устанавливаться импульсный трансформатор.

Принцип работы бесконтактной системы

Эволюционным продолжением транзисторно-контактной системы, является бесконтактное зажигание. В таких конструкциях вместо прерывателя устанавливается специальный датчик импульсов. Это дает возможность увеличить срок службы системы зажигания за счет отсутствия неисправностей, связанных с контактами прерывателя.

Датчик формирует электрические импульсы низкого напряжения. Он бывает трех типов:

  • Датчик Холла. Конструкция такого датчика включает в себя постоянный магнит, и пластину-полупроводник, оснащенную микросхемой.
  • Индуктивный. Принцип его работы основан на изменении величины индукции чувствительного элемента в зависимости от величины зазора между датчиком и движущимся пластинчатым ротором, воздействующим на магнитное поле.
  • Оптический. Он состоит из светодиода, фототранзистора и микросхемы согласования. При попадании света от диода на фототранзистор датчик подает массу (минус питания) на коммутатор. Перекрытие потока света провоцирует исчезновение тока в катушке и способствует дальнейшему формированию искры.

Конструктивно датчик импульсов интегрирован в распределитель и регулируется режимом вращения коленвала двигателя. Прерывание тока в первичной обмотке катушки зажигания бесконтактной системы осуществляется также транзисторным коммутатором, но реагирующим на сигналы датчика.

Читайте также:  Текущий ремонт автомобиля газ 3307

В момент вращения коленвала датчик посылает импульсы напряжения на коммутатор. Последний, соответственно, формирует импульсы тока в обмотке низкого напряжения катушки. Когда ток не поступает, на вторичной обмотке возникает высокое напряжение, которое передается распределителю и далее по высоковольтным проводам к нужной свече. Изменение угла опережения в бесконтактной системе зажигания также выполняется центробежным и вакуумным регуляторами.

Электронная и микропроцессорная системы

Самой современной системой считается электронная. Она не имеет механических контактов, а потому ее также можно назвать бесконтактной. Электронное зажигание является частью системы управления двигателем.

Электронная система зажигания

Выделяют два типа электронных бесконтактных систем зажигания:

  • С распределителем. В подобной схеме применяется механический распределитель зажигания, подающий высокое напряжение на заданную свечу.
  • Прямого зажигания. При такой схеме высокое напряжение поступает к электродам свечи напрямую с катушки.

Помимо базовых элементов электронная система зажигания включает:

  • Входные датчики. Они регистрируют данные о текущем режиме работы мотора и подают их в виде электронных сигналов блоку управления.
  • Электронный блок управления. Он выполняет обработку сигналов и передает соответствующие команды на воспламенитель.
  • Исполнительное устройство, или воспламенитель. Фактически является транзисторной платой, обеспечивающей в открытом режиме поступление напряжения на первичную обмотку, а в закрытом – отсечку и формирование высокого напряжения на вторичной обмотке катушки.

Такие системы могут оснащаться одной общей (в конструкциях с распределителем), индивидуальными (при подаче энергии прямо на свечу) или сдвоенными катушками зажигания.

Разновидностью электронной системы является микропроцессорная. В ней применяется целый комплекс датчиков, сигналы которых обрабатываются ЭБУ. Он рассчитывает оптимальный режим работы системы в заданный момент времени. Преимуществами такой конструкции является снижение расхода топлива и улучшение динамических характеристик автомобиля.

Системы зажигания бензиновых двигателей: принцип работы

Работа любого бензинового двигателя внутреннего сгорания была бы невозможна без специальной системы зажигания. Именно она отвечает за воспламенение смеси в цилиндрах в строго определенный момент. Различают несколько возможных вариантов:

  • контактная;
  • бесконтактная;
  • электронная.

Каждая из этих систем зажигания авто имеет свои особенности и конструкцию. Однако вместе с этим, большинство элементов разных вариантов одинаковы.

Одинаковы элементы разных систем зажигания автомобиля

Незаменимым и наиболее востребованным является наличие аккумуляторной батареи. Даже в отсутствие или при поломке генератора при помощи неё можно ещё некоторое время продолжать движение. Генератор также есть неотъемлемой частью, без которой нормальное функционирование любой из систем невозможно. Свечи зажигания, бронепровода, высоковольтная катушка и управляющие элементы дополняют любую из упомянутых систем. Основное различие меду ними заключается в типе, управляющего моментом зажигания и отвечающего за искрообразование устройства.

Контактный прерыватель-распределитель зажигания

Это устройство инициирует возникновение искры высокого, до 30000 В, вольтажа на контактах свечей зажигания. Для этого он соединяется с высоковольтной катушкой, благодаря которой происходит образование высокого напряжения. Сигнал на катушку передается при помощи проводов от специальной контактной группы. При её размыкании кулачковым механизмом происходит образование искры. Момент её возникновения должен строго соответствовать требуемому положению поршней в цилиндрах. Это достигается благодаря четко рассчитанному механизму, передающему вращательное движение на прерыватель-распределитель. Одним из недостатков устройства является влияние механического износа на время возникновения искры и на её качество. Это влияет на качество работы двигателя, а значит может требовать частых вмешательств в регулировку его работы.

Бесконтактное зажигание

Этот тип устройств не зависит на прямую от размыкания контактов. Основную роль в моменте искрообразования здесь играет транзисторный коммутатор и особый датчик. Отсутствие зависимости от чистоты и качества поверхности контактной группы может гарантировать более качественное искрообразование. Однако этот тип зажигания тоже использует прерыватель-распределитель, который отвечает за передачу тока на нужную свечу в нужный момент.

Электронное зажигание

В этой системе воспламенения смеси полностью отсутствуют механические движущиеся части. Благодаря наличию специальных датчиков и особого блока управления, образование искры и момент её раздачи на цилиндры выполняются гораздо более точно и надежно, чем у вышеупомянутых систем. Это дает возможность улучшить работу двигателя, увеличить его мощность и снизить расход топлива. Кроме того, радует и высокая надежность устройств такого типа.

Основные этапы работы системы зажигания

Различают несколько основных этапов работы любых систем зажигания:

  1. накопление необходимого заряда;
  2. высоковольтное преобразование;
  3. распределение;
  4. искрообразование на свечах зажигания;
  5. возгорание смеси.

На любом из этих этапов слаженная и точная работа системы чрезвычайно важна, а значит свой выбор необходимо останавливать на надежных и проверенных устройствах. Лучшей по праву считается электронная система зажигания.

Видео про принцип работы системы зажигания:

Система зажигания

Системы зажигания служат для воспламенения горючей смеси в цилиндре в конце такта сжатия. Во всех мотоциклетных двигателях топливовоздушная смесь воспламеняется за счет электрической искры, возникающей между электродами свечи зажигания при напряжении 15–30 тыс. В.

Существуют системы зажигания контактного и бесконтактного типов, они могут работать как с аккумуляторной батареей, так и без нее.

Контактные системы зажигания. До конца 80-х годов прошлого века на бензиновых ДВС применяли так называемую батарейную систему зажигания, в которую входят контактный прерыватель, катушка зажигания и свечи зажигания.

Схема батарейной системы зажигания:

1 — аккумуляторная батарея;

2 — замок зажигания;

3 — катушка зажигания;

4 — первичная обмотка;

5 — вторичная (высоковольтная) обмотка;

6 — свеча зажигания;

7 — вращающийся кулачок;

8 — контакты прерывателя;

Контактный прерыватель, состоящий из подвижного и неподвижного контактов, задает момент образования искры.

Контактный прерыватель («Иж-Юпитер-5»)

1 — верхнее основание (левый цилиндр);

2 — токоподводящая пружина;

3 — подвижный контакт (молоточек) цепи зажигания левого цилиндра;

Читайте также:  Где сделать обвес машины

4 — текстолитовая подушка молоточка;

5 — неподвижный контакт (наковальня);

6 — нижнее основание (правый цилиндр);

7 — эксцентрик регулировки зазора между контактами;

8 — винт фиксации регулировки зазора;

9 — контактная группа цепи зажигания правого цилиндра;

10 — смазочный фильц;

12 — паз регулировки опережения зажигания левого цилиндра;

13 — паз регулировки опережения зажигания правого цилиндра

Подвижный контакт размещен на изолированном от корпуса рычажке (молоточке), который приводится в движение кулачком, вращающимся синхронно с коленчатым валом двигателя. В двухтактных двигателях искра должна возникать один раз за один оборот коленчатого вала, поэтому прерыватель системы зажигания размещают непосредственно на цапфе коленчатого вала. В четырехтактных двигателях воспламенение смеси происходит один раз за два оборота, поэтому прерыватель размещают на конце распределительного вала, вращающегося в два раза медленнее коленчатого.

Неподвижный контакт закреплен на основании (наковальне), соединенном с «массой». В заданный момент кулачок своим выступом поднимает подвижный контакт, разрывая тем самым цепь первичной обмотки катушки зажигания. В этот момент из-за быстрого изменения напряженности магнитного поля во вторичной обмотке катушки наводится (индуцируется) ток высокого напряжения. Конденсатор, включенный параллельно контактам, уменьшает искрообразование на них и, следовательно, обгорание контактов.

В двухцилиндровых двухтактных двигателях каждый цилиндр имеет свою цепь зажигания. В двухцилиндровых четырехтактных двигателях один кулачок обслуживает двухискровую катушку зажигания. В них искра проскакивает во время одного цикла в каждом цилиндре дважды: около ВМТ — в установленный момент искрообразования и около НМТ — во время такта выпуска, когда она не влияет на рабочий процесс. В некоторых четырехтактных двигателях с двумя и более цилиндрами используют распределитель зажигания автомобильного типа с одной катушкой.

Схема батарейной системы зажигания с двухискровой катушкой зажигания («Урал», «Днепр»)

1 — аккумуляторная батарея;

2 — замок зажигания;

3 — двухискровая катушка зажигания;

4 — первичная обмотка;

5 — вторичная (высоковольтная) обмотка;

7 — контакты прерывателя;

9 — свечи зажигания

Катушка зажигания представляет собой трансформатор. Она преобразует ток низкого напряжения, поступающий к ее первичной обмотке от аккумуляторной батареи (или альтернатора, работающего без аккумулятора), в ток высокого напряжения во вторичной обмотке, который направляется по высоковольтному проводу к свече.

б — внешний вид у мотоцикла «Сова»;

в — мотоцикла «Иж»;

г — мотоцикла «Урал» (двухискровая);

2 — первичная обмотка;

3 — вторичная обмотка;

4 — контакт провода высокого напряжения;

5 — провод высокого напряжения;

6 — контакты первичной обмотки

Обмотки катушки зажигания наматываются на сердечник из пластин трансформаторного железа. Первичная обмотка имеет несколько сотен витков толстого провода, а вторичная 15–20 тыс. витков тонкого провода. Корпус катушки неразборный, ремонту она не подлежит.

Свеча зажигания — неразборная; состоит из стального корпуса с резьбовой частью с одной стороны для вворачивания в головку цилиндра и стержня для соединения с колпачком высоковольтного провода с другой. Этот стержень, являющийся центральным электродом свечи, изолирован от ее корпуса. Свеча имеет в той части, которая входит в камеру сгорания, один или несколько боковых электродов. Между ними и центральным электродом устанавливается определенный зазор (обычно 0,5–1,0 мм), в котором образуется искра. Свечи различаются по размеру резьбовой части и калильному числу. Диаметр резьбы свечи у двухтактных двигателей — 14 мм; у четырехтактных, из-за ограниченности пространства камеры сгорания в многоклапанных головках, он меньше — 12 или 10 мм. Длина резьбовой части свечи должна точно соответствовать высоте отверстия в головке.

Устройство (а) и маркировка (б) искровой свечи зажигания, правильные и недопустимые способы ее установки (в)

1 — контактная гайка (может отсутствовать);

2 — оребрение изолятора;

3 — контактный стержень;

4 — керамический изолятор;

5 — металлический корпус;

6 — пробка стеклогерметика;

7 — уплотнительное кольцо;

8 — теплоотводящая шайба;

9 — центральный электрод;

10 — тепловой конус изолятора;

11 — рабочая камера;

12 — боковой электрод «массы»;

h — искровой зазор;

I — правильная установка;

II — нет уплотнительного кольца;

III — два уплотнительных кольца;

IV — резьбовая часть коротка;

V — резьбовая часть длинна

Калильное число характеризует способность свечи выдерживать тот или иной тепловой режим. Свечи с большим калильным числом называют «холодными», они применяются в форсированных двигателях. Благодаря особенностям конструкции, такие свечи мало нагреваются, интенсивно отводят тепло. В противоположность им, свечи с малым калильным числом называют «горячими». Каждому типу двигателя и режиму работы завод-изготовитель предписывает применение строго определенного типа свечей. На российских мотоциклах применяются свечи марок: А17В («Иж-Юпитер-5»), А23-1 («Сова», «Иж-Планета-5»), А14В («Урал»).

Схема тепловых потоков через «горячую» (а) и «холодную» (б) свечу

Через наконечник свечи (колпачок) импульсы высокого напряжения передаются от катушки зажигания на свечи. Кроме того, в наконечнике для снижения уровня радиопомех, излучаемых системой зажигания, установлен проволочный резистор, а корпус закрыт металлическим экраном. Нередко для защиты от радиопомех специальный резистор вставляют в корпус самой свечи — в этом случае в ее маркировке присутствует буква «R».

2 — гнездо с пружинным замком, в которое вставляется резьбовой наконечник свечи;

4 — высоковольтный провод;

5 — металлический экран

Существенный недостаток батарейной системы зажигания заключается в подгорании контактов, поскольку через них проходит ток высокого напряжения (до 5 А). Этого недостатка лишены контактно-транзисторные системы зажигания («ТАС»), устанавливавшиеся на некоторые зарубежные модели. В них контакты формируют только управляющий импульс тока низкого напряжения, поступающий к транзисторному коммутатору.

Бесконтактные системы зажигания. На современных мотоциклах контактные батарейные системы зажигания полностью вытеснены бесконтактными системами зажигания (БСЗ). Они более надежны и позволяют достигать высоких частот вращения коленчатого вала двигателя. Кроме того, БСЗ не нуждаются в обслуживании и периодической регулировке момента зажигания. Различают конденсаторные (тиристорные — CDI) и транзисторные (TI) системы, в которых применяют импульсные генераторы (датчики) разных видов: индуктивного типа (магнитоэлектрические) и использующие эффект Холла.

Читайте также:  Диагностика двигателя автозапчасти для иномарок

а — с индуктивным датчиком («Урал-Соло Классик»); б — с датчиком Холла («Урал-Волк»); в — схема магнитного потока, взаимодействующего с датчиком Холла; 1 — индуктивный датчик 2 — ротор с двумя постоянными магнитами; 3 — коммутатор; 4 — вращающийся экран датчика Холла; 5 — датчик Холла; 6 — основание со встроенным коммутатором; 7 — пазы для регулировки опережения зажигания

Индуктивный датчик представляет собой отдельную обмотку, схожую с обмоткой генератора. Конструкция такого датчика проста, и он не требует питания, однако вырабатываемое им напряжение управляющего импульса зависит от частоты вращения коленчатого вала двигателя; кроме того, форма импульса может быть искажена воздействием магнитного поля других обмоток генератора.

Датчик Холла состоит из чувствительного элемента и расположенного на небольшом расстоянии неподвижного постоянного магнита, между которыми создается магнитное поле. В пространстве между чувствительным элементом и магнитом вращается металлический экран с прорезью. Прорезь беспрепятственно пропускает магнитный поток, и на выходе элемента появляется ЭДС; сам же поток экран прерывает. Обычно датчик Холла совмещен с микросхемой, стабилизирующей напряжение его питания и усиливающей выходной сигнал. В многоцилиндровых двигателях экран имеет несколько прорезей по числу цилиндров (или их пар, если применены двухискровые катушки зажигания). Датчики Холла достаточно надежны, миниатюрны, потребляют малое количество энергии, а самое главное их достоинство — малая чувствительность к помехам от других обмоток генератора. Их недостатки — необходимость питания чувствительного элемента постоянным током и некоторая сложность в установке.

Сигнал от датчика любого типа поступает в электронный блок управления — коммутатор, который подает импульс на катушку зажигания.

Электронный коммутатор мотоциклов «Сова», «Курьер», «Минск»

В системах CDI энергия искрообразования накапливается в конденсаторе, который заряжается от бортовой сети или от специальных обмоток генератора. Управляемый диод (тиристор) не пропускает ток на «массу» до тех пор, пока на его ключ не будет подан положительный сигнал определенной силы и формы от датчика. В момент искрообразования магнит, расположенный в корпусе ротора, проходит мимо обмотки датчика и возбуждает в ней электрический ток. Этот ток, поступая на ключ тиристора, открывает его, и конденсатор мгновенно разряжается на «массу» через тиристор. В результате через первичную обмотку катушки зажигания проходит короткий и сильный электрический импульс — как в случае размыкания контактов в батарейной системе зажигания.

Упрощенная схема электронной бесконтактной системы зажигания CDI (а) и принцип работы тиристора (б):

1 — обмотка датчика; 2 — постоянный магнит ротора; 3 — обмотка зажигания; 4 — конденсатор; 5 — первичная обмотка катушки зажигания;

6 — вторичная обмотка катушки зажигания; 7 — свеча зажигания; 8 — тиристор; 9 — ключ тиристора; 10 — помехоподавительный диод

Системы CDI обеспечивают мощную, но относительно кратковременную искру. Такая схема предпочтительнее на двухтактных двигателях, для которых характерна работа на более богатых (а значит, легче «поджигаемых») смесях. В четырехтактных двигателях для надежного воспламенения бедных смесей требуется более «продолжительная» искра, которую создает система TI.

Все чаще на современных мотоциклах с многоцилиндровыми четырехтактными двигателями применяют цифровые микропроцессорные БСЗ как с механическим распределителем зажигания (ESA), или одной катушкой зажигания, обслуживающей два цилиндра, так и полностью электронные (DLI) с индивидуальными (на каждой свече) катушками зажигания. Для их управления двигатель оснащают рядом датчиков: частоты вращения и положения коленчатого вала (метки ВМТ), положения дроссельной заслонки, температуры охлаждающей жидкости и воздуха, содержания кислорода («лямбда-зонд»). Нередко цифровая БСЗ объединена с системой впрыска топлива («Motronic» мотоциклов БМВ).

Для нормальной работы двигателя, независимо от типа системы зажигания, важны правильная установка угла опережения зажигания, а также соответствие тепловой характеристики свечи типу двигателя и режимам его работы. Искра должна образоваться между электродами свечи не точно в ВМТ, а чуть раньше, поскольку воспламенение горючей смеси происходит с запаздыванием. Поэтому каждому типу двигателя и даже режиму его работы соответствует оптимальный угол опережения зажигания (в мм или градусах поворота коленчатого вала до ВМТ). При более раннем зажигании в двигателе возникает детонация (взрывное горение), приводящая к поломкам деталей цилиндро-поршневой группы. Позднее зажигание вызывает перегрев деталей двигателя и падение его мощности.

В четырехтактных двигателях корректировка угла опережения зажигания в зависимости от частоты вращения коленчатого вала осуществляется автоматическими регуляторами: центробежным или электронным в системах с БСЗ.

Центробежный регулятор состоит из двух пластин, на одной из которых закреплен кулачок, размыкающий контакты батарейной системы зажигания, а на другой — оси специальных грузов. Вторая пластина вращается вместе с валом, а грузы своими пальцами входят в пазы первой пластины. При увеличении частоты вращения вала грузы расходятся, преодолевая усилие пружин, и поворачивают на заданный угол (до 15°) пластину с кулачком. Из российских мотоциклов центробежный регулятор изменения угла опережения зажигания имеют мотоциклы «Урал» с контактной системой зажигания.

Центробежный регулятор опережения зажигания ПМ-302А батарейной системы зажигания («Урал», «Днепр»)

1 — корпус; 2 — конденсатор; 3 — контакты прерывателя; 4 — крышка; 5 — пластина регулятора с грузиками; 6 — пружина; 7 — пластина с кулачком; 8 — ушко с пазом для регулировки опережения зажигания

Подобные устройства имеют и электронные системы зажигания современных двухтактных двигателей («Иж-Планета-5» с генератором маховичного типа).

Основные неисправности системы зажигания — отсутствие или недостаточная сила искры, а также неправильно установленный момент зажигания. Для устранения проверяют всю цепь — от источника напряжения и контактной пары (датчика) до катушки зажигания, высоковольтного провода и свечи.

Оцените статью