- Digitrode
- цифровая электроника вычислительная техника встраиваемые системы
- Тиристорные возбудители синхронных двигателей: назначение и принцип работы
- Типовые схемы пуска синхронных электродвигателей
- Что такое тиристорные возбудители и для чего они нужны?
- Описание и схема установки
- Режимы работы
- Какие бывают и где применяются
Digitrode
цифровая электроника вычислительная техника встраиваемые системы
Тиристорные возбудители синхронных двигателей: назначение и принцип работы
Возбудители предназначены для питания обмоток возбуждения и управления током возбуждения синхронных двигателей.
Напряжение питания цепей защиты 220 В постоянного тока. Схема возбудителя предусматривает автоматический, ручной и аварийный режимы управления током возбуждения.
При работе в режиме ручного управления возбудитель обеспечивает:
• пуск СД с автоматической подачей возбуждения в функции тока статора;
• плавную регулировку тока возбуждения от 0,3 до 1,4 Iрн с возможной подстройкой граничных пределов;
• ограничение тока возбуждения по минимуму в пределах 0-0,5 Iрн;
• ограничение тока возбуждения по максимуму в пределах 0,8-1,75 Iрн;
• защиту ротора от длительной перегрузки по току;
• форсировку по напряжению 1,75 номинального значения при номинальном напряжении сети, питающей возбудитель. Форсировка срабатывает при падении напряжения сети статора на 15-20% от номинального значения;
• форсированное гашение поля ротора при отключении двигателя и наличии дополнительного сигнала на гашение поля.
При работе в режиме автоматического управления возбудитель. Кроме режимов, перечисленных выше, обеспечивает автоматическое регулирование по любому из следующих законов или по их комбинациям;
• по току возбуждения;
• по напряжению статора;
• по полному току статора;
• по углу узла нагрузки;
• по реактивному току статора;
• по внутреннему углу машины;
• по активному току статора;
При работе в режиме аварийного управления возбудитель обеспечивает только регулировку току возбуждения от нуля до форсировочного значения с возможностью подстройки граничных пределов.
Напряжение питания = 220 В из схемы управления масляным выключателем подается через автоматический выключатель S4 на релейную схему возбудителя.
Реле K1 — выполняет функцию защитного реле, т.е. оно принимает сигнал о недопустимой работе возбудителя по цепям 137 или 180 и становится на питание через свой контакт и кнопку деблокировки защит S9. Своим замыкающим контактом К1 отключает М.В. и размыкающим контактом в цепи включения К4, а также подает инвертирующий сигнал при отключении СД. Р4 своим замыкающим контактом в блоке Б снимает импульсы управления с тиристоров возбудителя. Реле К7 служит для определения момента спадания тока статора при пуске до требуемого значения. Реле К5 включает и отключает пусковое сопротивление вместе с герконовым реле К8 и К9 второй геркон К9 работает на защиту от асинхронного хода двигателя.
При спадании тока статора отключается реле К4, срабатывает реле времени К10, которое с выдержкой времени включает промежуточное реле К6, снимающее запрет на подачу импульсов управления. В обмотку ротора подается ток возбуждения, срабатывает реле К8, К5 и закрываются тиристоры V11, V12 в цепи гасящего сопротивления R16.
Типовые схемы пуска синхронных электродвигателей
Синхронные двигатели получили широкое распространение в промышленности для электроприводов, работающих с постоянной скоростью (компрессоров, насосов и т.д.). В последнее время, вследствие появления преобразовательной полупроводниковой техники, разрабатываются регулируемые синхронные электроприводы.
Достоинства синхронных электродвигателей
Синхронный двигатель несколько сложнее, чем асинхронный, но обладает рядом преимуществ, что позволяет применять его в ряде случаев вместо асинхронного.
1. Основным достоинством синхронного электродвигателя является возможность получения оптимального режима по реактивной энергии , который осуществляется путем автоматического регулирования тока возбуждения двигателя. Синхронный двигатель может работать, не потребляя и не отдавая реактивной энергии в сеть, при коэффициенте мощности ( cos фи) равным единице.Если для предприятия необходима выработка реактивной энергии, то с и нхронный электродвигатель, работая с перевозбуждением, может отдавать ее в сеть.
2. Синхронные электродвигатели менее чувствительны к колебаниям напряжения сети, чем асинхронные электродвигатели. Их максимальный момент пропорционален напряжению сети, в то время как критический момент асинхронного электродвигателя пропорционален квадрату напряжения.
3. Синхронные электродвигатели имеют высокую перегрузочную способность. Кроме того, перегрузочная способность синхронного двигателя может быть автоматически увеличена за счет повышения тока возбуждения, например, при резком кратковременном повышении нагрузки на валу двигателя.
4. Скорость вращения синхронного двигателя остается неизменной при любой нагрузке на валу в пределах его перегрузочной способности.
Способы пуска синхронного электродвигателя
Возможны следующие способы пуска синхронного двигателя: асинхронный пуск на полное напряжение сети и пуск на пониженное напряжение через реактор или автотрансформатор.
Пуск синхронного двигателя осуществляется как пуск асинхронного. Собственный пусковой момент синхронной машины мал, а у неявнополюсной равен нулю. Для создания асинхронного момента ротор снабжается пусковой беличьей клеткой, стержни которой закладываются в пазы полюсной системы. (В явнополюсном двигателе стержни между полюсами, естественно, отсутствуют.) Эта же клетка способствует повышению динамической устойчивости двигателя при набросах нагрузки.
За счет асинхронного момента двигатель трогается и разгоняется. Ток возбуждения в обмотке ротора при разгоне отсутствует. Машина пускается невозбужденной, так как наличие возбужденных полюсов осложнило бы процесс разгона, создавая тормозной момент, аналогичный моменту асинхронного двигателя при динамическом торможении.
При достижении так называемой подсинхронной скорости, отличающейся от синхронной на 3 — 5%, подается ток в обмотку возбуждения и двигатель после нескольких колебаний около положения равновесия втягивается в синхронизм. Явнополюсные двигатели за счет реактивного момента при малых моментах на валу иногда втягиваются в синхронизм без подачи тока в обмотку возбуждения.
В синхронных двигателях трудно одновременно обеспечить необходимые значения пускового момента и входного момента под которым понимают асинхронный момент, развиваемый при достижении скоростью 95% синхронной. В соответствии с характером зависимости статического момента от скорости, т.е. в соответствии с типом механизма, для которого предназначен двигатель, на электромашиностроительных заводах приходится варьировать параметры пусковой клетки.
Иногда для ограничения токов при пуске мощных двигателей уменьшают напряжение на зажимах статора, включая последовательно обмотки автотрансформатора или резисторы. Следует иметь в виду, что при пуске синхронного двигателя цепь обмотки возбуждения замыкается на большое сопротивление, превышающее сопротивление самой обмотки в 5 — 10 раз.
В противном случае под действием токов, наводимых в обмотке при пуске, возникает пульсирующий магнитный поток, обратная составляющая которого, взаимодействуя с токами статора, создает тормозной момент. Этот момент достигает максимального значения при скорости, несколько превышающей половину номинальной, и под его влиянием двигатель может приостановить разгон на этой скорости. Оставлять на время пуска цепь возбуждения разорванной опасно, так как возможно повреждение изоляции обмотки индуцируемыми в ней ЭДС.
Асинхронный пуск синхронного электродвигателя
Схема возбуждения синхронного двигателя с глухоподключенным возбудителем довольно проста и может применяться в том случае, если пусковые токи не вызывают падения напряжения в сети больше допустимого и статистический момент нагрузки Мс
Асинхронный пуск синхронного двигателя производится присоединением статора к сети. Двигатель разгоняется как асинхронный до скорости вращения, близкой к синхронной.
В процессе асинхронного пуска обмотка возбуждения замыкается на разрядное сопротивление, чтобы избежать пробоя обмотки возбуждения при пуске, так как при малой скорости ротора в ней могут возникнуть значительные перенапряжения. При скорости вращения, близкой к синхронной, срабатывает контактор КМ (цепь питания контактора на схеме не показана), обмотка возбуждения отключается от разрядного сопротивления и подключается к якорю возбудителя. Пуск заканчивается.
Слабым местом большинства электроприводов с синхронными двигателям, значительно усложняющим эксплуатацию и повышающим затраты, многие годы являлся электромашинный возбудитель. В настоящее время широкое распространение для возбуждения синхронных двигателей находят тиристорные возбудители . Они поставляются в комплектном виде.
Тиристорные возбудители синхронных электродвигателей более надежны и имеют более высокий к.п.д. по сравнению с электромашинными возбудителями. С их помощью легко решаются вопросы оптимального регулирования тока возбуждения для поддержания постоянства cos фи, напряжения на шинах, от которых питается синхронный двигатель, а также ограничение токов ротора и статора синхронного двигателя в аварийных режимах.
Тиристорными возбудителями комплектуется большинство выпускаемых крупных синхронных электродвигателей. Они выполняют обычно следующие функции:
- пуск синхронного двигателя с включенным в цепь обмотки возбуждения пусковым резистором,
- бесконтакное отключение пускового резистора после окончания пуска синхронного двигателя и защиту его от перегрева,
- автоматическую подачу возбуждения в нужный момент пуска синхронного электродвигателя,
- автоматическое и ручное регулирование тока возбуждения
- необходимую форсировку возбуждения при глубоких посадках напряжения на статоре и резких набросах нагрузки на валу синхронного двигателя,
- быстрое гашение поля синхронного двигателя при необходимости снижения тока возбуждения и отключениях электродвигателя,
- защиту ротора синхронного двигателя от длительной перегрузки по току и коротких замыканий.
Если пуск синхронного электродвигателя производится на пониженное напряжение, то при «легком» пуске возбуждение подается до включения обмотки статора на полное напряжение, а при «тяжелом» пуске подача возбуждения происходит при полном напряжении в цепи статора. Возможно подключение обмотки возбуждения двигателя к якорю возбудителя последовательно с разрядным сопротивлением.
Процесс подачи возбуждения синхронному двигателю автоматизируется двумя способами: в функции скорости и в функции тока.
Система возбуждения и устройство управления синхронных двигателей должны обеспечивать:
- пуск, синхронизацию и остановку двигателя (с автоматической подачей возбуждения в конце пуска);
- форсировку возбуждения кратностью не менее 1,4 при снижении напряжения сети до 0,8U н ;
- возможность компенсации двигателем реактивной мощности, потребляемой (отдаваемой) смежными электроприемниками в пределах тепловых возможностей двигателя;
- отключение двигателя при повреждениях в системе возбуждения;
- стабилизацию тока возбуждения с точностью 5% установленного значения при изменении напряжения сети от 0,8 до 1,1;
- регулирование возбуждения по отклонению напряжения статора с зоной нечувствительности 8%;
- при изменении питающего напряжения статора синхронного двигателя от 8 до 20% ток изменяется от установленного значения до 1,4 I н , увеличение тока возбуждения для обеспечения максимальной перегружаемости двигателя.
На схеме, приведенной на рисунке, подача возбуждения синхронному двигателю осуществляется с помощью электромагнитного реле постоянного тока КТ (реле времени с гильзой). Катушка реле включается на разрядное сопротивление Rразр через диод VD. При подключении обмотки статора к сети в обмотке возбуждения двигателя наводится ЭДС. По катушке реле КТ проходит выпрямленный ток, амплитуда и частота импульсов которого зависят от скольжения.
При пуске скольжение S = 1. По мере разгона двигателя оно уменьшается и интервалы между выпрямленными полуволнами тока возрастают; магнитный поток постепенно снижается по кривой Ф(t).
При скорости, близкой к синхронной, магнитный поток реле успевает достигнуть значения потока отпадания реле Фот в момент, когда через реле КТ ток не проходит. Реле теряет питание и своим контактом создает цепь питания контактора КМ (на схеме цепь питания контактора КМ не показана).
Рассмотрим контроль подачи возбуждения в функции тока с помощью реле тока. При пусковом токе срабатывает реле тока КА и размыкает свой контакт в цепи контактора КМ2.
График изменения тока и магнитного потока в реле времени КТ
При скорости, близкой к синхронной, реле КА отпадает и замыкает свой контакт в цепи контактора КМ2. Контактор КМ2 срабатывает, замыкает свой контакт в цепи возбуждения машины и шунтирует резистор Rразр.
Что такое тиристорные возбудители и для чего они нужны?
Что такое тиристорные возбудители синхронных двигателей, как они работают и где применяются. Виды тиристорных возбудителей и режимы работы.
Электронные устройства управления возбуждением широко применяются в промышленности. Они необходимы для подачи напряжения на обмотку возбуждения и управления. Предусмотрены для регулировки в автоматическом режиме токов возбуждения при прямом или реакторном пуске от частотного преобразователя или сети. Реализует стабильную работу в режиме синхронной и аварийной работы мощных синхронных электродвигателей. Достоинствами таких систем являются простота управления, компактность, интеграция в системы электронного регулирования в автоматических системах управления, где применяется дистанционное изменение параметров. Далее мы подробно расскажем о том, что такое тиристорные возбудители, каких видов они бывают и как работают.
Описание и схема установки
Тиристорные возбудители экономичны, не сложны в эксплуатации и наладке. Выполнены в виде отдельно стоящего шкафа.
Ниже приведена схема и описание электронной установки с тиристорным управлением, из которой понятно из чего состоит прибор:
Конструкция прибора представляет:
- Управляемый выпрямитель, обеспечивающий питанием обмотки возбуждения синхронного двигателя. Представляет блок тиристоров с системой импульсно-фазового управления.
- Реактор, представляющий входной трансформатор.
- Модуль гашения поля.
- Система тестирования.
- Блок измерения, контролирующий уровень тока на выходе напряжения возбудителя и тока статора.
- Модуль защиты и блок сигнализации. Обеспечивает защиту индикации неисправности систем автоматического регулирования и диагностики.
Поставляется совместно с релейно-контактным узлом управления запуска двигателя. Имеет цифровую или аналоговую систему управления.
Тиристорный возбудитель позволяет:
- Подать напряжение на обмотки возбуждения в нерабочем состоянии электродвигателя, для тестового режима.
- В режиме прямого пуска подает напряжение на обмотки возбуждения, для поддержания функции тока статора, и тока скольжения.
- При реакторном пуске подача возбуждения после включения шунтирующего выключателя.
- Плавный (асинхронный) пуск с устройством высоковольтного плавного пуска.
- Обеспечивает синхронный запуск с применением высоковольтного частотного преобразователя.
Электронный возбудитель контролирует и поддерживает нормальную работу. При этом он обеспечивает безопасность оборудования, для чего нужен блок защиты:
- Защищает выходные цепи при превышении тока возбуждения от первоначально установленной величины.
- Производит защиту входных цепей при превышении сетевых токов предварительно заданный.
- Повреждения изолирующего контура.
- Аварийного отключения.
- От ошибки чередования фаз.
- Отсутствия силового напряжения.
- Ошибки синхронизации двигателя с параметрами сети.
- При аварийной ситуации электронного блока напряжения.
- Длительного запуска, отличного от заданного. Длительность пуска задается программным путем. Время превышения пуска считается ошибкой.
- Оповещение об асинхронном ходе.
- От внешних аварийных ситуаций.
- Производится защита от ошибок управления.
Если в комплектации возбудителя предусмотрена защита от снижения сопротивления изоляции внешнего контура, комплектуется дополнительно:
- Узлом постоянного контроля параметров сопротивления изоляции с отображением на дисплее.
- Наличием сухого контакта в случае уменьшения сопротивления изоляции, менее двух, постоянных значений, которые задаются наладчиками.
Наличие блока управления позволяет удерживать в пределах допуска напряжение в статоре, а также коэффициент производительности или возбуждения в автоматическом режиме. Характеристики задаются во время пуско-наладочных работ или дистанционно.
Внешний вид и внутренняя конструкция представлена на фото:
Режимы работы
Устройство обеспечивает три режима работы, автоматический, ручной и аварийный. Возможно изменение режимов во время функционирования двигателя. Переход от одного к другому не сопровождается бросками тока. Ниже познакомимся, как работает устройство.
Какие бывают и где применяются
Промышленность выпускает тиристорные возбудители уже много лет. Сейчас выпускаются модернизированные устройства с компьютерным управлением.
Устройства предназначены для запитывания обмоток возбуждения. С автоматическим регулированием тока при прямом, реакторном, частотном и плавном запусках.
В таблице представлены типы возбудителей с характеристиками:
Область применения достаточно широка, применяются на ГЭС, электротехнической, металлургической, нефтехимической, химической и пищевой промышленности.