Схема управления мотор колесами
Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки.
Далее будут рассмотрены основные настройки дельта принтера.
Для управления и настройки принтера мы используем программу Pronterface.
Калибровка принтера делится на три этапа:
1 Этап. Корректируем плоскость по трем точкам
Выставление в одну плоскость трех точек — A, B, C (расположенных рядом с тремя направляющими). По сути необходимо уточнить высоту от плоскости до концевых выключателей для каждой из осей.
Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.
В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z соответствует осям A, B, C.(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева — X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера.
Точки, по которым мы будем производить калибровку назовем аналогично (A, B, C) и позиция этих точек равна A= X-52 Y-30; B= X+52 Y-30; C= X0 Y60.
Алгоритм настройки:
- Подключаемся к принтеру. (В случае “крагозяб” в командной строке, необходимо сменить скорость COM порта. В нашем случае с 115200 на 250000 и переподключится)
После чего мы увидим все настройки принтера. - Обнуляем высоты осей X, Y, Z командой M666 x0 y0 z0.
И сохраняем изменения командой M500. После каждого изменения настроек необходимо нажать home (или команда g28), для того что бы принтер знал откуда брать отсчет. - Калибровка принтера производится “на горячую”, то есть должен быть включен подогрев стола (если имеется) и нагрев печатающей головки (HotEnd’а) (Стол 60град., сопло 185 град.) Так же нам понадобится щуп, желательно металлический, известных размеров. Для этих задач вполне подойдет шестигранный ключ (самый большой, в нашем случае 8мм, он предоставляется в комплекте с принтерами Prizm Pro и Prizm Mini)
- Опускаем печатающую головку на высоту (условно) 9мм (от стола, так, что бы сопло еле касалось нашего щупа, т.к. высота пока что не точно выставлена.) Команда: G1 Z9.
- Теперь приступаем непосредственно к настройке наших трех точек.
Для удобства можно вместо g- команд создать в Pronterface четыре кнопки, для перемещения печатающей головки в точки A, B, C, 0-ноль.
Далее командой меняем параметры высоты оси Y: M666 Y <посчитанная величина>
M666 Y0.75
M500
G28
2 Этап. Исправляем линзу
После того как мы выставили три точки в одну плоскость необходимо произвести коррекцию высоты центральной точки. Из за особенности механики дельты при перемещении печатающей головки между крайними точками в центре она может пройти либо ниже либо выше нашей плоскости, тем самым мы получаем не плоскость а линзу, либо вогнутую либо выпуклую.
Корректируется этот параметр т.н. дельта радиусом, который подбирается экспериментально.
Калибровка:
- Отправляем головку на высоту щупа в любую из трех точек стола. Например G1 Z9 X-52 Y-30
- Сравниваем высоту центральной точки и высоту точек A,B,C. (Если высота точек A, B, C разная, необходимо вернутся к предыдущей калибровки.)
- Если высота центральной точки больше остальных, то линза выпуклая и необходимо увеличить значение дельта радиуса. Увеличивать или уменьшать желательно с шагом +-0,2мм, при необходимости уменьшить или увеличить шаг в зависимости от характера и величины искривления (подбирается экспериментально)
- Команды:
G666 R67,7
M500
G28 - Подгоняем дельта радиус пока наша плоскость не выровняется
3 Этап. Находим истинную высоту от сопла до столика
Третьим этапом мы подгоняем высоту печати (от сопла до нижней плоскости — столика) Так как мы считали, что общая высота заведомо не правильная, необходимо ее откорректировать, после всех настроек высот осей. Можно пойти двумя путями решения данной проблемы:
1 Способ:
Подогнав вручную наше сопло под щуп, так что бы оно свободно под ним проходило, но при этом не было ощутимого люфта,
- Командой M114 выводим на экран значение фактической высоты нашего HotEnd’а
- Командой M666 L получаем полное значение высоты (Параметр H)
- После чего вычитаем из полной высоты фактическую высоту.
- Получившееся значение вычитаем из высоты щупа.
Таким образом мы получаем величину недохода сопла до нижней плоскости, которое необходимо прибавить к полному значению высоты и и записать в память принтера командами:
G666 H 235.2
M500
G28
2 Способ:
Второй способ прост как валенок. С “потолка”, “на глаз” прибавляем значение высоты (после каждого изменение не забываем “уходить” в home), добиваясь необходимого значения высоты, но есть шанс переборщить со значениями и ваше сопло с хрустом шмякнется об стекло.
Как сделать авто калибровку для вашего принтера и что при этом авто калибрует принтер вы узнаете из следующих статей.
Электрическая схема мотор колеса
Электросхема подключения мотор-колеса [ 2011-05-26 ]
В комплектацию мотор колеса входит: ручки тормоза с микровыключателями, ручка «газа», датчик системы ассистирования
контроллер и универсальное зарядное устройство, предназначенное для зарядки как литий-ионных. так и свинцово кислотных аккумуляторов:
Схема выводов контроллера:
Вариантов подключения мотор-колеса несколько. Один из вариантов на приведенной ниже схеме.
Ручка управления скоростью- обычно разводка проводов — красный провод это питание датчика +5В, голубой — земля, зеленый — выходной сигнал. Напряжение должно меняться на зелёном (относительно голубого) от 1 до 3В (примерно) при повороте ручки. Там стоит не чистый датчик Холла, а микросхема с датчиком холла. 4мА — это ток потребления, а напряжение можно подавать от 4 до 10В. и выход 2.5.В. В зависимости от направления магнитного поля, это напряжение либо уменьшается, либо повышается, с ростом напряжённости.
Подключение электродвигателя к контроллеру: Три толстых провода, желтый, зеленный, голубой — три фазы(«А», «B», «С»). Жгут из пяти тонких проводов: красный — +5В, черный «-» и три датчика — желтый, зеленный, голубой(«А», «B», «С»).
Теги: мотор колесо Волынь, мотор-колеса Волынь, купить мотор колесо в Украине Волынь, мотор колесо велосипеда Волынь
Мотор-Колесо Шкондина.
О Мотор-Колесе Шкондина говорят и пишут многие. И часто это происходит на уровне мифов и предположений. Мол, есть такое изобретение, и по многим параметрам оно просто замечательно, а вот как оно работает, практически никто не объяснил. Сам Василий Васильевич Шкондин отсылает всех к своим многочисленным отечественным и зарубежным патентам, где, якобы, всё написано, а если хотите производить такие колеса, то берите лицензии.
О Мотор-Колесе Шкондина в Интернете можно найти ряд интересных статей. Например, «Василий Шкондин – конструктор лучших в мире электровелосипедов». Или познакомиться с информацией о моторе Шкондина по ряду фильмов.
Чтобы понять особенности мотор-колеса Шкондина, а проще, говоря, двигателя Шкондина, нужно сравнить его двигатель с конструкцией стандартного двигателя постоянного тока и так называемого бесколлекторного двигателя. Но для начала приведем некоторые данные из патентов Шкондина, а также ряд рисунков, которые позволят понять основные принципы, которые положил Шкондин в основу своего мотора.
Познакомиться с патентами Шкондина можно по указанным адресам, но можно почитать и на моем сайте по адресам здесь и здесь. Сам Шкондин старается позиционировать свой двигатель как мотор-колесо, но при желании этому двигателю можно придать любую форму, сохраняя при этом саму идеологию изобретения. Рассмотрим поближе мотор-колесо Шкондина (рис.1)
Рис.1. Мотор-Колесо Шкондина в полуразобранном состоянии.
Итак, имеем статор внутри, и ротор снаружи. На статоре через равные промежутки установлено 11 пар магнитов, полюса магнитов чередуются. Всего полюсов 22. На роторе установлены 6 U-образных электромагнитов, у которых, получается, имеется 12 полюсов. На роторе установлены щетки, с помощью которых подается питание на электромагниты, а на статоре установлен коллектор, с которого электрический ток поступает на щетки. Обращаю внимание на то, что расстояние между полюсами любого электромагнита ротора равно расстоянию между соседними магнитами на статоре. А это означает, что в момент точного «соприкосновения» полюсов одного из электромагнитов с соседними полюсами магнитов на статоре, полюса остальных электромагнитов с полюсами магнитов на статоре не «соприкасаются».
Сдвиг полюсов электромагнитов на роторе и полюсов магнитов на статоре относительно друг друга создает между ними градиент напряженности магнитного поля, а последний как раз и является источником крутящего момента. Для варианта двигателя Шкондина, изображенного на рис.1 получается. что в каждый момент времени крутящий момент создают 5 электромагнитов из 6. Тот электромагнит, полюса которого точно «соприкасаются» с полюсами магнитов на статоре, крутящего момента не создаёт. Получаем своеобразный силовой КПД в 83%. И это при отсутствии притиво ЭДС. А если считать КПД по доле участвующих в создании тяги магнитов на статоре, то получаем, что из 22 магнитов тягу создают 20 магнитов, т.е. 91%.
Пока прошу поверить на слово, что коллектор мотора Шкондина устроен так, что он в нужное время переключает направление тока в обмотках электромагнитов, что обеспечивает тягу только в одну сторону. Можно даже утверждать, что в данном моторе Шкондина работают сразу 6 классических электромоторов. Мотор действительно работает мотором, а не маховиком. В данном моторе на «полную катушку» используется не только мощность электромагнитного поля, но и коллекторно-щеточный механизм. И при этом двигатель устроен удивительно просто. Он состоит всего из 5-6 основных деталей. Создав для этих деталей точные матрицы, можно штамповать двигатели Шкондина миллионами.
Познакомимся поближе с одним из патентов Шкондина. Это ИМПУЛЬСНО-ИНЕРЦИОННЫЙ ЭЛЕКТРОДВИГАТЕЛЬ. Выделим из этого патента достаточно большую цитату, которая содержит основные отличительные признаки двигателя Шкондина:
«Импульсно-инерционный электродвигатель, в соответствии с настоящим изобретением, содержит: статор с круговым магнитопроводом, на котором закреплено четное количество постоянных магнитов с одинаковым шагом;
ротор, отделенный от статора воздушным промежутком и несущий четное число электромагнитов, которые расположены попарно напротив друг друга;
распределительный коллектор, закрепленный на корпусе статора и имеющий расположенные по окружности токопроводящие пластины, соединенные с чередованием полярности с постоянным источником тока и разделенные диэлектрическими промежутками;
токосъемники, установленные с возможностью контакта с пластинами коллектора, причем каждый из токосъемников подключен к одноименному выводу обмоток соответствующих электромагнитов.
Каждый из электромагнитов имеет по две катушки с последовательно встречным направлением обмотки, причем обмотки катушек смежных электромагнитов соединены последовательно, а выводы обмоток противоположных электромагнитов, не подключенные к токосъемникам, соединены между собой. Количество постоянных магнитов статора, равное n и количество электромагнитов ротора равное m, подбирают таким образом, чтобы они удовлетворяли соотношениям:
n=10+4k, где k — целое число, принимающее значения 0, 1, 2, 3 и т.д.
m=4+2L, где L — любое целое число, удовлетворяющее условию 0
Уже на первой выставке – Всемирном салоне изобретений «Брюссель – Эврика – 1990» В.В. Шкондин стал человеком года в Бельгии, а его пилотная модель электрической инвалидной коляски на «Мотор-колесах Шкондина» была отмечена золотой медалью и специальным призом министра финансов Бельгии.
Впервые в мировой практике оплату пошлин за международную заявку на патенты в 26 странах за автора произвел Госкомизобретений (заявка № 4731991/07 от 01.09.89г.).
По истечении 18 месяцев (общепринятый регламент) эксперт Европейского патентного ведомства уведомил Госкомизобретений и автора, что «в результате экспертизы, вышеуказанному изобретению не было противопоставлено ни одной публикации» (из письма «Союзпатента» № 2412Р от 23.07.92 г.).
Импульсно-инерционный электродвигатель, в соответствии с настоящим изобретением, содержит:
статор с круговым магнитопроводом, на котором закреплено четное количество постоянных магнитов с одинаковым шагом; количество постоянных магнитов, как минимум, на 2 больше количества башмаков электромагнитов ротора;
ротор, отделенный от статора воздушным зазором и несущий четное число электромагнитов, которые расположены попарно напротив друг друга; распределитель, закрепленный на корпусе статора и имеющий расположенные по окружности токопроводящие пластины, соединенные с чередованием полярности с постоянным источником тока и разделенные диэлектрическими промежутками;
Каждый из электромагнитов имеет по две катушки с последовательно встречным направлением обмотки, причем обмотки катушек смежных электромагнитов соединены последовательно, а выводы обмоток противоположных электромагнитов, не подключенные к токосъемникам, соединены между собой.
Количество постоянных магнитов статора, равное n и количество электромагнитов ротора равное m, подбирают таким образом, чтобы они удовлетворяли соотношениям:
n=10+4k, где к — целое число, принимающее значения 0,1, 2, 3 и т.д. m=4+2L, где L — любое целое число, удовлетворяющее условию 0^L 80 км). Как видно, прогресс не стоит на месте. Так что с такими технологиями в скором времени запас хода в 200-400 км для электровелосипеда будет не в диковинку!
Для удобства выбора Вы можете посмотреть сравнительные параметры электронаборов и батарей разных брендов, представленых на нашем сайте и выбрать вариант с подходящими и наиболее важными для Вас характеристиками. Одни привлекают своей быстроходностью, вторые — динамикой разгона, третьи — оптимальностью комплектации, четвертые — компактностью, пятые — легкостью наката и миниатюрностью электропривода.
Что представляет собой мотор-колесо?
Мотор-колесо, называемое также мотором Шкондина представляет собой бесщеточный мотор-втулку, вентильный двигатель устанавливаемый на переднюю или заднюю вилку, заспицованную под необходимый размер колеса. Установив привод на обычный велосипед получаем гибридное транспортное средство: электровелосипед (человек+электромотор), в котором физическая сила велосипедиста может комбинироваться с силой тяги высокомоментного электромотора.
Электробайк/ электровелосипед — это велосипед с электрическим мотором, мощностью от 180 Вт, помогающий велосипедисту с легкостью преодолевать подъемы и большие расстояния, рационально распределяя нагрузку на ноги и не теряя при этом функций обычного велосипеда.
Электробайк, как и велосипед, экологически чист, маневренен и практически бесшумен. Зарядившись от обычной розетки 220В, он вновь готов к дальнему пробегу. Средние показатели скорости от 25 до 40 км/ч. Дальность поездки велосипеда на электротяге может варьироватся в зависимости от характеристик мотора, аккумулятора, погодных условий, ландшафта местности и составляет в среднем на ровном участке дороги 40 км при теплой безветренной погоде.
КПД 500W мотор-колеса, составляющий более 85%, примерно постоянен во всем диапазоне скоростей, крутящий момент максимален при старте, поэтому здесь нет коробки передач, редуктора, вариатора, ременной либо цепной передач или трущихся деталей, подверженных быстрому износу. Плавный набор скорости обеспечивается ручкой »газа» — своеобразным реостатом, управление и защита от перегрузки — контроллером, движущая сила — тяговыми аккумуляторами.