Схема токовой отсечки двигателя

Токовая отсечка

Токовая отсечка — мгновенно действующая токовая защита, селективность действия которой по отношении к защитам смежных участков достигается выбором тока срабатывания I сз большим максимального тока внешнего короткого замыкания I кз.вн.мах .

Работа защиты на защищаемом участке обеспечивается тем, что ток в линии увеличивается по мере приближения места повреждения к источнику питания. Время срабатывания токовой отсечки складывается из времени действия токового и промежуточного реле и составляет t отс = 0,04 — 0,06 с .

Рассмотрение принципа действия токовой отсечки проведем для радиальной линии с односторонним питанием. Максимальный ток внешнего короткого замыкания в защищаемой линии АБ длиной l имеет место при металлическом коротком замыкании в начале следующей линии, у шин подстанции Б (точка К).

Для селективной работы токовой отсечки линии АБ ток срабатывания выбирается для трехфазного короткого замыкания следующим образом:

I сз = k отс х I кз.вн.мах .

Особенность работы токовой отсечки: защищаемая зона, характеризующая чувствительность защиты, составляет только часть линии (I сз кз ). Согласно правил устройства электроустановок токовая отсечка считается эффективной, если зона действия в минимальном режиме не меньше 20 % длины линии. Обычно токовая защита устанавливается вместе с максимальной токовой защитой (МТЗ) с выдержкой времени на первых участках защищаемой линии.

Токовые отсечки также могут применяться для защиты линий с двусторонним питанием.

Токовые отсечки устанавливаются с обеих сторон линии АБ. Для их селективной работы должна выполняться отстройка от максимального тока внешнего замыкания.

Рассматриваются несколько случаев:

Далее выбирается большее значение. Т.к. в данном случае I кз.махА кз.мах.Б , то ток срабатывания отсечек по обоим концам линии одинаков и равен I сз = k отс х I кз.махА .

Как видно, образовалась зона нечувствительности, при коротком замыкании в которой ни одна из токовых отсечек не срабатывает. В минимальном режиме нагрузки зона нечувствительности возрастает.

Так как время действия отсечки мало, практически мгновенное, то при выборе тока срабатывания необходимо учитывать влияние апериодических составляющих, значения которых высоки именно в первые периоды существования тока короткого замыкания. Отстройка от апериодической составляющей производится выбором коэффициента отсечки k отс = 1 ,2 — 1,3 . В случае использования на линиях с двусторонним питанием, также отстраиваются от токов качания.

Для отсечек, зона действия которых охватывает только часть линии, важна одинаковая чувствительность при различных видах коротких замыканий. Поэтому для защиты от многофазных замыканий в сетях с изолированной нейтралью обычно используется схема соединения ТТ в неполную звезду.

Для защиты от перенапряжений воздушных линий, не покрытых тросами, используются разрядники, создающие искусственные короткие замыкания на землю, длительностью до 1 , 5 периода, что соразмеримо со временем действия токовой отсечки. Для отстройки от работы разрядников используется промежуточное реле П со временем срабатывания 2-4 периода.

Область применения токовых отсечек : применяются как вспомогательные защиты для сокращения времен отключения повреждения. В некоторых случаях мгновенная токовая отсечка может служить основной защитой, например на радиальных линиях, питающих понижающие трансформаторы.

Преимущества токовой отсечки:

1. Селективность работы в сетях любой конфигурации с любым числом источников питания.

2. Быстрое отключение наиболее тяжелых для системы коротких замыканий, расположенных вблизи шин станций и подстанций.

Недостатки : Защищают только часть длины линии при металлических коротких замыканиях. При повреждении через переходное сопротивление зона действия токовой отсечки может снизиться до нуля.

Расчет зоны действия ТО, принцип действия

Токовая отсечка – это разновидность максимальной токовой защиты с ограниченной зоной действия, предназначенная для быстрого отключения короткого замыкания. Отсечки бывают мгновенные и с малой выдержкой времени до 0,6 секунд. Отличие отсечки от мтз в отсутствии у токовой отсечки реле времени.

Селективность действия токовой отсечки достигается ограничением ее зоны действия. Эта защита отстраивается от тока КЗ в конце защищаемой линии или места, до которого она должна действовать. Ниже рассмотрим принцип действия различных токовых отсечек и их расчет.

Мгновенная токовая отсечка на линии с односторонним питанием

Зона действия токовой отсечки определяется графически. На рисунке наша защищаемая линия между точками АВ. Сначала строится кривая зависимость значения тока короткого замыкания от расстояния до точки КЗ. Точка КЗ в нашем примере – это конец линии, точка А.

Читайте также:  Как разобрать двигатель уаз 421

Затем строится прямая параллельная оси расстояния равная току срабатывания отсечки. Область пересечения прямой и кривой представляет собой зону действия защиты. В нашем примере зона действия защиты – это отрезок ВБ.

Также зону действия токовой отсечки можно определить по выражению:

  • xЛ – сопротивление линии, для которой выбираем защиту
  • EC – эквивалентная ЭДС генераторов системы
  • xC – сопротивление системы

Ток срабатывания защиты определяется по выражению ниже:

  • kН – коэффициент надежности
  • IK.MAX – максимальный ток короткого замыкания в конце линии

Коэффициент надежности учитывает погрешности при расчете тока кз и погрешность срабатывания реле.

Коэффициент чувствительности отсечки рассчитывается по выражению:

где в числителе максимальный ток КЗ в начале защищаемой линии, в примере это точка В, а в знаменателе ток срабатывания защиты.

Мгновенная токовая отсечка на линии с двусторонним питанием

Рассмотрим схему линии с двусторонним питанием. По обоим концам расположены генераторы. Вначале необходимо определить максимальные токи короткого замыкания в конце линии с обеих сторон. Тот из токов, величина которого будет больше, и будет принят за максимальный ток короткого замыкания.

На линиях с двусторонним питанием ставится два комплекта отсечек с обеих сторон линии. Зоны действия определяются аналогично, как и для линии с односторонним питанием.

На рисунке у нас одна отсечка защищает при кз в точке А, вторая при кз в точке В. Зона действия первой – ВБ, второй – АГ. Максимальный ток кз в нашем случае больше Ik(A). Его и принимаем за расчетный для обеих отсечек.

Ток срабатывания защиты выбирается по большему из двух выражений:

Второе выражение используют при расчетах на линиях с двусторонним питанием. При наличии двух источников питания (генераторов), между ними проходят токи качания.

Максимальный ток качания определяется как сумма ЭДС генераторов деленная на сопротивление цепи между двумя генераторами, включая сопротивления генераторов (сверхпереходные x”d).

Мгновенные токовые отсечки являются самыми простыми защитами. К их плюсам можно отнести быстродействие и простоту схемы. К недостаткам относится область действия, так как она не распространяется на всю линию. Кроме линий, токовые отсечки применяются на трансформаторах. Стоит упомянуть и токовые отсечки, с выдержкой времени. А если соединить отсечку с выдержкой времени, мгновенную и максимальную токовую защиту, то получится трехступенчатая защита, которая может заменить более сложные защиты.

Токовая отсечка трансформатора

Токовая отсечка трансформатора является самой простой защитой трансформатора, которая защищает его от однофазных и междуфазных коротких замыканий. Принцип действия аналогичен принципу действия токовой отсечки линии.

Отсечка не будет срабатывать при повреждениях, сопровождаемых малыми токами, например, витковые замыкания, замыкания на землю в обмотке. Устанавливается токовая отсечка на трансформаторах мощностью менее 6300кВА. Если на трансформаторе установлена дифференциальная защита, то токовая отсечка не требуется.

Перейдем к расчету параметров защиты. Начнем с тока срабатывания защиты.

Ток срабатывания токовой отсечки отстраивается от броска тока намагничивания и от максимального тока короткого замыкания за трансформатором. Бросок тока намагничивания, который появляется при пуске трансформатора, составляет 3-5 от номинального.

  • kН – коэффициент надежности, зависит от типа реле
  • IK.MAX – максимальный ток короткого замыкания за трансформатором
  • IНАМ – ток намагничивания трансформатора, равный 3-5 от номинального тока трансформатора

Ток срабатывания реле (уставка) определяется по выражению ниже:

  • kСХ – коэффициент схемы
  • IС.З. – ток срабатывания защиты
  • nТТ – коэффициент трансформации ТТ

Коэффициент чувствительности токовой отсечки трансформатора

К преимуществам отсечки относится её быстродействие. Мгновенное отключение позволяет уменьшить возможные повреждения трансформатора и оборудования, запитанного от трансформатора.

К недостаткам можно отнести то, что зона действия отсечки ограничена. Поэтому отсечка вместе с газовой защитой трансформатора и максимальной токовой защитой составляют защиту трансформаторов малой мощности.

Сохраните в закладки или поделитесь с друзьями

Токовая отсечка

Токовая отсечка – это вид релейной защиты, состоящий в обесточивании цепи при возникновении на линии короткого замыкания. Поблагодарив Шабада М.А., приступим.

Общие определения

Ещё Эдисон использовал предохранители для защиты сетей от короткого замыкания. Отдельные историки считают, первые автоматы входят в число его изобретений. Но авторам не удалось найти тому свидетельств. Что касается релейной защиты, обнаружено элементарное незнание определений людьми. К примеру, в ответах Майл.ру человек поинтересовался, чем токовая отсечка отличается от максимальной токовой защиты. Определения схожие, но разное назначение!

  • Токовой отсечкой принято называть немедленное отключение защищаемого участка цепи при возникновении короткого замыкания.
  • Максимальная токовая защита отличается тем, что охраняет усложнённую цепь, иногда разветвлённую. Срабатывает с задержкой – предоставляя возможность системам, стоящим ниже по линии, отключиться раньше. Тогда максимальная токовая защита ничего не предпримет. Если ситуация накаляется, через заданный интервал времени обесточивается ветка целиком.

Это легко пояснить на примере квартирного щитка. Допустим, в ванной комнате поставили розетку (не ближе заданного расстояния от источников влаги) и защитили дифференциальным автоматом. Квартира защищена от короткого замыкания на входе в щиток. Автомат на 63 А, к примеру, если его чувствительность слишком велика (класс А или В), способен обрезать помещения раньше, нежели среагирует защита по дифференциала. Тогда хозяин оставит без света всю семью. Следовательно, на входе в квартиру полагается так организовать токовую защиту, чтобы дать возможность стоящим за ней автоматам сделать дело, вырубив единственное помещение.

В промышленности мудрецы умудряются разбить линию питания, что токовая отсечка отвечает за собственный сегмент. Если короткое замыкание по соседству, она не отреагирует. Максимальная токовая защита становится запасным вариантом для локальной аппаратуры. Если не отработает местный автомат, питание убирается с небольшой задержкой. Это называется дальним резервированием, приборы максимальной токовой защиты вправе находиться далеко от места аварии. В комплексе две разновидности предохраняющих систем называются двухступенчатой токовой защитой. Обе характеризуются рядом качеств:

  1. Селективность – способность обособленно реагировать лишь на требуемые аварии. Порой качество называют избирательностью.
  2. Чувствительность. Полагается по возможности продлить действие защитных систем вдоль линии. Что не всегда удаётся выполнить в отношении протяжённых систем. Из-за удалённости датчики не улавливают момент возникновения аварии.
  3. Быстродействие обеспечивается в отключении защищаемого участка в минимальный срок. Учитывая сказанное выше о необходимости дать время нижестоящим ступеням системы выполнить работу раньше.
  4. Надёжность трактуется как безотказность.
Читайте также:  Диагностика автомобиля с выездом при покупке

Исполнительная часть

Оба вида мероприятий организуются при помощи максимальных реле, которые в теории защиты делятся на:

  1. Первичные и вторичные.
  2. Прямого и косвенного действия.

Первичным реле прямого действия называется разновидность, где контактор и катушка непосредственно включены в цепь защиты. Управляются по току потребления аппаратуры и его же обрывают. Первичные реле прямого действия широко применяются в цепях до 1 кВ. С повышением класса напряжения до 10 кВ часты вторичные реле прямого действия. Это означает – для снятия величины тока из защищаемой цепи применяется измерительный трансформатор. Контактор включён последовательно с нагрузкой. Этим сильно снижается потребление, уменьшается вносимая прибором в цепь реактивная мощность.

Вторичные реле косвенного действия используются там, где нерационально пытаться переключить громоздкий контактор через маломощный токовый трансформатор. При больших потребляемых токах и повышенных классах напряжения дуга гасится с трудом, приходится применять особые меры. Первичная обмотка токового трансформатора состоит из 1-2 витков либо половинки, не предоставляя сильного управляющего сигнала. Приходится применять указательное реле, командующее исполнительным электромагнитным реле.

Питание катушки контактора выполняется от дополнительной низковольтной сети либо аккумуляторной батареи. Тогда управляющий ток называется оперативным, используется исключительно для приведения в действие схемы защиты.

Максимальные токовые реле изготавливаются с встроенной задержкой либо без. В последнем случае без доработки схемы годятся только для токовой отсечки, способны применяться в тандеме с таймером. И тогда становится возможной максимальная токовая защита. Последний случай обеспечивает большую гибкость, изготовители не в силах предугадать всех особенностей, следовательно, не определят задержку срабатывания верно. Характеристика подобной системы называется независимой от тока, работает без учёта его величины при коротком замыкании на линии. Налицо аналог электромагнитного звена квартирного защитного автомата.

Максимальные реле тока с замедленным срабатыванием часто конструируются так, что время срабатывания тем меньше, чем больше потечёт в цепи амперов. Следовательно, характеризуются зависимой характеристикой. Современные автоматические выключатели напоминают комбинированный класс оборудования, реле с ограниченно зависимой характеристикой. Когда срабатывание выше определённого порога происходит мгновенно, а ниже его – с запаздыванием. К примеру, А. Земсков показывал, что современные автоматы способны целый час работать при перегрузке на 45% прежде, чем питание пропадает.

Защита с зависимой характеристикой часто используется в цепях с классом напряжения 20 кВ. Вполне сочетаются с предохранителями, на коротком отрезке показывающими зависимую характеристику. Высоковольтные линии, как правило, демонстрируют независимую защиту. Если нужна задержка, рекомендуется применять реле времени (таймер). Токовая отсечка строится так, чтобы не отрабатывать КЗ далее по линии. Если брать пример с квартирным щитком, ситуация обеспечивается включением последовательно двух автоматов:

  1. 63 А на вводе в щиток.
  2. 16 А на розетки.

Очевидно, более чувствительным считается автомат с меньшим номиналом, срабатывающий раньше. Хотя пример не отличается большой наглядностью, но даёт представление, как обеспечивается селективность систем токовой отсечки. Одновременно вносится постулат о невозможности защитить всю линию одновременно.

Токовая отсечка: схемы включения реле

При реализации схемы рассматривают все виды коротких замыканий. Иногда не удаётся распознать подобные ситуации по величине тока, тогда в ход идут реле обратной и нулевой последовательности. Стандартные используемые схемы токовой отсечки:

  1. Неполная звезда. Охватывает посредством двух или трёх реле лишь две фазы сети. Часто применяется в цепях 35 кВ с изолированной или компенсированной нейтралью (где малы токи утечки на грунт).
  2. Полная звезда. Фазы охватываются двумя, тремя или четырьмя реле. Часто применяется в сетях 110 кВ с глухозаземлённой нейтралью и большим перекосом по фазам (велики токи, идущие на грунт).
  3. Треугольник. Система из двух или трёх реле, измеряющих линейные напряжения. Чаще встречается в цепях защиты трансформаторов звезда-треугольник.
  4. Двухфазная схема с одним реле на практике встречается редко. В просторечье называют восьмёркой, в старой литературе – неполным треугольником. Защищает двигатели небольшой мощности.
Читайте также:  Схемы загрузки грузовых автомобилей паллетами

Рассмотрим для примера, как работает неполная звезда (см. рис.), у которой трансформаторы тока включены в две линии – А и С. Возможные случаи поведения системы:

  1. Короткое замыкание по всем фазам приводит к ситуации, когда в обратном проводе (РТ3) тока нет, а в прочих ветвях его значение велико. Происходит срабатывание.
  2. При межфазном замыкании А и С происходит аналогичное.
  3. Прочие виды коротких замыкания вызывают перекос фаз, появляется ток в обратном проводе. Он оценивается реле РТ3, дающим команду на разрыв сети питания.

Недостаток неполной звезды – она принципиально не в состоянии отследить замыкание на землю фазы В. В результате подобная защита неприемлема для цепей с большими токами утечки на землю. В системах токовой отсечки частыми гостями становятся промежуточные реле с мощными контакторами. Когда полагается быстро выключить питание, требуются особенные качества. Большинство максимальных токовых реле не в состоянии справиться с оперативным отключением цепи.

Отличие полной звезды: возможно проследить любые короткие замыкания, межфазные и утечки на грунт. Общий провод здесь называется не обратным, а нулевым: содержит реле, улавливающие токи нейтрали и заземлителя основной линии. При прочих видах коротких замыканий нагрузка здесь невелика. Полная звезда применяется на линии с классом напряжений 110 кВ и глухозаземлённой нейтралью. Основания:

  1. В цепях от 3 до 35 кВ токи утечки на землю невелики, нет смысла обрывать питание полностью. Используется неполная звезда.
  2. Для сетей 110 кВ и выше часто вместо максимальной токовой применяется дистанционная защита. Дополнительные две причины:
  • При изолированной нейтрали в линии 110 кВ трансформаторы тока служат и для организации дифференциальной защиты. В результате вторичные обмотки соединены треугольником (а не звездой).
  • Вторая причина неприменимости – однофазные замыкания на землю не обязаны вызывать отключение линии. Это не считается аварией, работа продолжается с выездом на место происшествия ремонтной бригады.

При включении треугольником перечисленные выше доводы «против» недействительны. Указанная схема особенно часто применяется для сетей с классом напряжения выше 35 кВ. Треугольник хорош отсутствием нейтрали, большие токи коротких замыканий на землю не проходят преобразованными в цепь защиты, а замыкаются по периметру. Это важно при повышенном напряжении. Дополнительным преимуществом становится увеличение на 15% чувствительности к двухфазным замыканиям.

Наконец, при однорелейной защите измерению подвергаются лишь две фазы. Благодаря этому отслеживаются указанные типы неисправностей:

  1. Любое межфазное короткое замыкание. Чувствительность по этим видам аварий отличается в два раза. В зависимости от замкнувшихся фаз.
  2. Короткое замыкание на землю измеренных фаз (две из трёх).
  3. Короткое замыкание по всем трём фазам.

Невозможно отследить уход на грунт третьей линии, где нет измерителя. Вдобавок чувствительность в 1,7 раз ниже, нежели в любой из приведённых выше схем токовой отсечки. Такой защитой обычно не снабжают трансформатор, вторичные обмотки которого объединены в треугольник, ведь блокируется определение конкретного вида двухфазного короткого замыкания. Единственным достоинством по факту становится экономичность – используется единственное реле. Однорелейная схема токовой отсечки время от времени служит для защиты двигателей класса напряжений в 1 кВ и выше, мощностью до 2 МВт.

Оцените статью