Схема системы кондиционера автомобиля

Содержание
  1. Устройство кондиционера автомобиля
  2. Составные элементы
  3. Компрессор и его привод
  4. Магистрали
  5. Конденсатор
  6. Осушитель
  7. ТРВ, дроссель
  8. Испаритель
  9. Электрооборудование
  10. Кондиционер в составе климат-контроля
  11. Принцип работы
  12. Положительные и отрицательные стороны
  13. Автокондиционер: устройство и принцип работы электронной (электрической) схемы
  14. Электронная схема на автокондиционер – базовые компоненты
  15. Система последовательно включенных реле
  16. Автокондиционер и регуляция скорости вентиляторов
  17. Автокондиционер: управление циклом работы компрессора
  18. Термостатический выключатель (защита испарителя против обледенения)
  19. Термистор и усилитель сигнала термистора
  20. Датчики давления холодильной системы автокондиционера
  21. Защитные устройства (датчики) автокондиционера
  22. Датчик давления хладагента и скорость вентилятора
  23. Измерительный преобразователь (трансдуктор) давления
  24. Автокондиционер и микроконтроллерные системы управления
  25. Датчик контроля солнечной нагрузки
  26. Автокондиционер: электронно-механическое регулирование

Устройство кондиционера автомобиля

В современных автомобилях микроклимат в салоне обеспечивается тремя системами – вентиляции, обогрева и кондиционирования. И конструктивно самой сложной из них является кондиционер, в задачу которого входит охлаждение воздуха в салоне летом. Несмотря на это система кондиционирования достаточно распространена и устанавливается на многие авто даже бюджетного сегмента.

Принцип работы кондиционера автомобиля построен на свойстве определенных веществ поглощать и отдавать тепло при смене агрегатного состояния. Этот же принцип используется в бытовых холодильниках и стационарных кондиционерах. Поэтому все перечисленные устройства конструктивно очень схожи и состоят из одних и тех же составных элементов. Но автомобильный кондиционер отличается более компактными размерами и типом привода одного из основных узлов – компрессора.

Составные элементы

В целом, устройство автокондиционера включает в себя:

  • Компрессор;
  • Магистрали высокого и низкого давления;
  • Конденсатор;
  • Осушитель;
  • Терморегулирующий вентиль или дроссель;
  • Испаритель;
  • Электрооборудование (датчики температуры, электровентиляторы, электромагнитная муфта и т.д.).

Все перечисленные элементы соединены между собой магистралями, поэтому система закольцована и герметична. Основным рабочим элементом в системе кондиционирования является хладагент (фреон) – вещество, обеспечивающее поглощение и отдачу тепла.

Компрессор и его привод

Компрессор – узел, осуществляющий нагнетание хладагента. Он создает давление и обеспечивает движение фреона далее по системе. На автотранспорте применяется несколько видов компрессоров, отличающихся по конструкции. Наибольшее распространение получили компрессоры роторно-лопастного и поршневого типов, хотя встречаются и более интересные конструкции, к примеру, узел, работающий по принципу Ванкеля.

Устройство поршневого компрессора

Компрессор является своеобразным разделителем, который всю систему делит на контуры высокого и низкого давлений. Контур высокого давления включает в себя все элементы до испарителя, а к контуру низкого давления относится лишь магистраль, соединяющая испаритель с компрессором.

Компрессоры, используемые на автомобилях, обычно механические и в действие они приводятся от коленчатого вала посредством ременной передачи. Но поскольку, кондиционер используется не постоянно, то конструкция привода оснащена механизмом отключения компрессора. Обычно в качестве такого механизма используется электромагнитная муфта. Реже, но тоже используется электропривод компрессора – узел работает за счет электродвигателя. Такой привод используется на электромобилях.

Еще один тип привода – комбинированный, используется на некоторых гибридных моделях. На таких авто компрессор может работать как от электродвигателя (во время движения на аккумуляторах), так и от коленчатого вала (при задействовании ДВС).

Магистрали

Магистрали высокого давления рассчитаны на значительные нагрузки и температурное воздействие. При нагнетании фреона компрессором, давление хладагента существенно возрастает – до 250-270 кПа. При этом сжатие сопровождается сильным нагревом вещества (до 150 град). Поэтому к магистралям высокого давления выдвигаются серьезные эксплуатационные требования.

Магистрали низкого давления – обычные трубки, поскольку после испарителя давление хладагента сильно падает и по трубке проходит фреон практически с атмосферным давлением.

Конденсатор

В конденсаторе происходит переход хладагента из газообразного в жидкое состояние, сопровождающееся активным выделением тепла. Этот составной элемент представляет собой обычный радиатор (обычно из алюминиевых сплавов), на который установлены вентиляторы.

Расположение конденсатора в автомобиле

Чтобы произошла смена агрегатного состояния хладагента, необходимо обеспечить отвод тепла. Поэтому конденсатор располагается в передней части авто под радиатором системы охлаждения. Это обеспечивает при движении авто поток воздуха, который и забирает тепло от конденсатора, тем самым обеспечивая конденсирование фреона. А если воздушного потока недостаточно, он создается принудительно – вентиляторами.

Осушитель

Постоянные перепады температуры приводят к тому, что влага, попавшая внутрь системы, кристаллизируется (становиться кусочками льда), которые могут повредить составные элементы кондиционера, в первую очередь – компрессора. Чтобы этого не произошло, в конструкцию добавлен осушитель. Представляет он собой емкость со специальным наполнителем, улавливающим влагу.

ТРВ, дроссель

Терморегулирующий вентиль (ТРВ) – клапан, обеспечивающий контроль давления в системе, также в этом узле начинается процесс испарения хладагента.

Виды и исполнение ТРВ

ТРВ используется не на всех автомобилях. Ряд автопроизводителей вместо него применяет дроссель и аккумулятор (в основном в системах с климат-контролем). Дроссель выступает в качестве клапана регулировки давления, а аккумулятор – компенсационный резервуар, в котором удерживается лишний фреон.

Испаритель

Испаритель – еще один радиатор, используемый в конструкции системы кондиционирования, но размещен он в салоне (под приборной панелью). В этом элементе происходит испарение хладагента, которое сопровождается сильным поглощением тепла из окружающей среды. При этом влага, находящаяся в воздухе, конденсируется на поверхности радиатора. Чтобы конденсат не попал в салон, испаритель оснащен системой дренажа, по которой вода выводится наружу (под авто).

Для активной отдачи тепла и распространения охлажденного воздуха по салону, на испаритель установлен электровентилятор, обеспечивающий принудительное создание воздушного потока.

Электрооборудование

Поддержание заданной температуры, управление кондиционером, принудительная подача воздуха обеспечивается электрооборудованием.

Читайте также:  Двигатель бмв после масла кастрол

Поддержание нужной температуры происходит благодаря ряду температурных датчиков:

  • температуры охлаждающей жидкости;
  • термовыключатель вентилятора радиатора;
  • температуры испарителя.

Вариант электрической схемы кондиционера

В зависимости от модели автомобиля могут использоваться другие датчики и иная схема управления.

Управление оборудованием происходит на блоке, установленном на передней панели. За счет органов управления кондиционер включается в работу, выполняется регулировка температурного режима.

Кондиционер в составе климат-контроля

Кондиционер может быть, как отдельной системой, так и входить в состав климат-контроля. Во втором случае все системы салона – вентиляции, обогрева и кондиционирования взаимодействуют между собой и управляются электронным блоком (ЭБУ). К примеру, поддержание нужной температуры в салоне обеспечивается подогревом воздуха после охлаждения. То есть, часть воздушного потока, прошедшего испаритель, подается на радиатор печки, а после смешивается с основным, тем самым регулируя температуру. При этом устройство кондиционера автомобиля, используемого в климат-контроле, не отличается от оборудования, выполненного в виде отдельной системы.

Принцип работы

Функционирование кондиционера осуществляется по замкнутому кругу. Компрессор выполняет нагнетание газообразного фреона, создавая давление, из-за чего хладагент разогревается. После этого по магистрали высокого давления вещество подается в конденсатор. В нем за счет отдачи тепла происходит конденсирование фреона, и он становиться жидкостью, все еще находящейся под давлением.

После конденсатора по магистралям хладагент движется дальше и проходит через осушитель, где из него удаляются частицы воды и других примесей, чтобы они не привели к поломке системы.

Из осушителя жидкий хладагент поступает в ТРВ, где происходит регулировка (снижение) давления. При этом падение давления приводит к началу процесса перехода в газообразное состояние. То же самое происходит и в системах, оснащенных дросселем с аккумулятором.

После ТРВ фреон попадает в испаритель, в котором происходит сильное падение давления из-за чего хладагент начинает испаряться, поглощая тепло из окружающей среды. Вода же, сконденсировавшаяся на поверхности радиатора, по дренажному каналу выходит из салона.

Пройдя испаритель хладагент, уже в газообразном состоянии, по магистрали низкого давления поступает к компрессору, и весь процесс повторяется вновь.

Положительные и отрицательные стороны

Если говорить о достоинствах системы кондиционирования, то оно всего одно – кондиционер обеспечивает прохладу в салоне летом. При этом не нужно открывать окна в авто, поскольку воздух внутрь поступает через систему вентилирования, проходя через салонный фильтр. Поэтому водителю не приходится дышать пыльным воздухом с примесями выхлопных газов (при движении в условиях города и простаивании в пробках).

А вот недостатков кондиционера – достаточно много:

  • Кондиционер – дополнительная система, причем сложная по конструкции и требует обслуживания. Автовладельцу необходимо следить за состоянием трубопроводов и мест их соединений, периодически заправлять его хладагентом;
  • Автомобили, оснащенные этим оборудованием, стоят дороже, а наличие климат-контроля существенно повышает цену на модель.
  • Если привод компрессора осуществляется от коленчатого вала, то включение кондиционера сопровождается значительным падением мощности (до 15 л. с.), что особенно явно проявляется на авто с маломощными силовыми установками. Электропривод же создает значительную нагрузку на бортовую сеть. В любом случае включение кондиционера приводит к увеличению расхода топлива или заряда батарей электромобиля;
  • Воздух, охлажденный кондиционером, подается вентилятором, поэтому в салоне создается сквозняк, который может стать причиной заболевания;
  • Если влага, конденсирующаяся на испарителе, отводится, то бактерии, находящиеся в воздухе, остаются на этом радиаторе. Бактерии и грибки, накопившиеся на испарителе, не только создают неприятный запах в салоне, но и могут стать причиной появления аллергии;
  • Ремонт кондиционера – дорогостоящий, поэтому при его поломке многие автовладельцы, не спешат восстанавливать систему, предпочитая эксплуатировать авто без ремонта системы кондиционирования (на работоспособность двигателя такая поломка никак не влияет);
  • Фреон – химически агрессивное вещество, поэтому со временем он приведет к повреждениям составных компонентов системы, в первую очередь – магистралей и радиаторов. Поэтому поломка оборудования в любом случае произойдет.


Несмотря на большое количество недостатков, кондиционер – популярное оборудование и многие автовладельцы даже не рассматривают авто, не оснащенное таким устройством. А в некоторых европейских странах установка автокондиционера обязательное условие для автопроизводителей, эксплуатация авто без кондиционера в таких странах запрещена.

Автокондиционер: устройство и принцип работы электронной (электрической) схемы

Главная страница » Автокондиционер: устройство и принцип работы электронной (электрической) схемы

Ранее (здесь и здесь) рассматривались темы по кондиционированию воздуха внутри салонов автомобилей, но в основном эти материалы затрагивали механическую сторону вопроса. Теперь – в рамках текущей публикации, рассматривается схема электроники (электрики) на автокондиционер транспортного средства.

Электронная схема на автокондиционер – базовые компоненты

По сути, ниже сделана попытка разложить систему кондиционирования автомобиля по электронным компонентам, задействованным в технологической схеме.

Возможно, потенциальному владельцу и пользователю откроется, таким образом, лучшее понимание относительно электронного (электрического) управления автокондиционером.

Схема электроники (электрики) автокондиционера включает достаточно большое число различных элементов, при помощи которых выполняется тот или иной функционал управления работой.

Более того, помимо компонентов, отслеживающих корректную работу системы кондиционирования, используется ряд устройств, которыми обеспечивается защита автокондиционера. Рассмотрим классический вариант схемы с разбором всех возможных компонентов.

Система последовательно включенных реле

Основой схемы управления автокондиционера выступает система последовательно включенных реле (Р1-Р5) с разными функциями. Так, реле давления (Р4-Р5) соединяются последовательно с цепями управления муфтой компрессора.

При условиях «недостаточного» или «избыточного» давления в системе, эти устройства «размыкают контакт», разрывая цепь питания муфты холодильного компрессора.

Читайте также:  Ниссан патрол у61 тест драйв

Автомобили с электронным впрыском топлива, как правило, оборудуются электронным модулем управления (ECM – Electronic Control Module) подключаемым к цепи проводки автокондиционера.

Когда переключатель (1) включен, модулем ECM посылается сигнал запроса проверки повреждения цепи. То есть реле давления замыкает цепь, модуль ECM активирует реле, создавая потенциал земли питания на муфте компрессора.

Схема электронного управления автокондиционером: Р1- коммутация вентилятора; Р2 – включение/выключение автокондиционера; Р3 – коммутация термостата; Р4 – реле низкого давления; Р5 – реле высокого давления; 1 – коммутация системы; 2 – термальная защита; 3 – катушка магнитного сцепления компрессора; 4 – защитный диод; 5 – контроль наличия «земли»

Следующей не менее значимой системой схемы управления значится регуляция скорости вращения крыльчаток вентиляторов автокондиционера.

Обычно конструкция предусматривает наличие не менее двух рабочих вентиляторов – испарительного и конденсаторного. Первый является внутренним (салонным), второй – внешним (уличным).

Автокондиционер и регуляция скорости вентиляторов

Принцип действия регулятора обычно строится на эффекте сопротивления индуктивности. По сути, регулятор скорости вентилятора попросту состоит из проводов, скрученных спиралью, соединённых последовательно. Эти спиралевидные проводники имеют различный диаметр.

Электрический ток протекает через одну или несколько образованных таким способом катушек. За счёт сопротивления индуктивностей изменяется скорость вращения вала двигателя вентилятора. Однако помимо индуктивного регулятора, применяется также функция электронного контроллера.

Регуляция скорости вращения вентиляторов: A – электронная схема; B – индуктивная схема; 1 – терминал управления; 2 – питание 12В; 3 – выход отрегулированного потенциала

Для варианта электронного контроллера преобразованием слаботочных сигналов ECM в более высокий потенциал тока изменяется напряжение на двигателе вентилятора.

Следует отметить, скорость вентилятора, в данном случае, регулируется бесступенчатым принципом. Такой тип регулятора скорости используется системой электронного климат-контроля (ECC — Electronic Climate Control) автомобиля.

Автокондиционер: управление циклом работы компрессора

Для управления циклом работы холодильного компрессора автокондиционера применяется ряд электронных устройств. Все способны контролировать температурные изменения, а также изменения давления хладагента. Одним из важных компонентов схемы холодильного компрессора автокондиционера выступает термостат.

Термостатический выключатель (защита испарителя против обледенения)

Контактная группа термостата соединена последовательно с цепью управления муфты компрессора. Когда температура змеевика испарителя приближается к 0ºC, этот момент фиксируется капиллярной трубкой термостата, контактирующей с трубкой испарителя.

Внутри капиллярной трубки содержится химическое вещество, способное расширяться или сжиматься в зависимости от изменений температуры.

Контактная группа термостатического переключателя связана с трубкой механически через мембрану и разрывается в условиях низкой температуры трубки испарителя (ниже нуля градусов). Соответственно, прерывается электрическая цепь питания компрессора автокондиционера.

Схема, демонстрирующая работу термостата автокондиционера: 1 – коммутатор питания; 2 – компрессор с регулятором скорости привода; 3 – ограничительный резистор; 4 – мотор вентилятора; 5 – термостатическое реле (термостат); 6 – катушка муфты сцепления

Когда температура трубки испарителя поднимется до заданной точки (4-5°C), расширяющееся вещество внутри баллона термостата воздействует на мембрану, сила передачи которой замыкает контакт цепи. Электрическая цепь питания холодильного компрессора восстанавливается, магнитная муфта срабатывает, включается рабочий цикл.

Термистор и усилитель сигнала термистора

Фактически термистор исполняет функцию аналогичную той, что выполняет термостатический переключатель. Исключением здесь является отсутствие механического воздействия на точки контакта и капиллярную трубку.

Термистор компрессора автокондиционера и усилитель активируются электронным способом. Термистор как устройство представляет чувствительный датчик, но в отличие от капиллярной трубки термостата этот прибор измеряет температуру воздуха, исходящего от змеевика испарителя.

С точки зрения электрической – термистор является резистором типа NTC (Negative Temperature Co-efficient), то есть датчиком с отрицательным температурным коэффициентом.

Как правило, термистор дополняется электронной печатной платой и электрическими компонентами, составляющими в сборе усилитель сигнала. Сопротивление термистора усиливается при помощи дополнительной электронной схемы, после чего применяется для управления (включения/выключения) реле муфты сцепления автокондиционера.

Датчики давления холодильной системы автокондиционера

Существуют конструкции автомобилей, где используется система кондиционирования с циклическим сцеплением (CCOT — Cycling Clutch Orifice Tube). Здесь для управления компрессором используется реле давления, расположенное между испарителем и компрессором. Этот датчик давления электрически соединён последовательно с муфтой привода компрессора.

Датчик давления под циклическое сцепление: 1 — датчик давления под муфту компрессора с моментом отключения — 200 кПа, включения — 350 кПа; 2 – датчик высокого давления; муфта сцепления с приводом

Как только давление на низкой стороне системы кондиционирования воздуха достигает приблизительно 200 кПа, муфта привода компрессора отключается реле давления. Параметр давления низкой стороны на уровне 200 кПа, примерно соответствует температуре змеевика испарителя + 0,40°С – чуть выше точки замерзания воды.

Как только компрессор деактивирован, низкое давление постепенно повышается, что сопровождается повышением температуры змеевика испарителя. В заданной точке реле давления замыкает контакт питания привода муфты компрессора. Аппарат включается, начинает работать, вновь понижая температуру хладагента внутри испарителя.

Защитные устройства (датчики) автокондиционера

Традиционно каждый автокондиционер имеет защитный выключатель по температуре, расположенный непосредственно на корпусе холодильного компрессора. Защитным термальным выключателем предотвращаются возможные повреждения компрессора по причине излишнего внутреннего трения механических частей.

Датчик термальной защиты (корпусный): А – конструкция устройства (в разрезе); B – компрессор автокондиционера; 1 – биметаллическая пластина; 2 – фиксированный контакт; 3 – подвижный контакт; 4 – традиционная точка установки

Датчик-выключатель определяет температуру корпуса компрессора. Если фиксируется переход установленного граничного параметра температуры корпуса, термальным датчиком электрическая цепь привода муфты компрессора прерывается.

Между тем выключатель обладает функцией возврата в исходное состояние. Поэтому цепь питания вновь замыкается, как только корпус компрессора остывает до рабочей температуры.

Читайте также:  Какое моторное масло выбрать для двигателя киа

Датчик давления хладагента и скорость вентилятора

Схемой автокондиционера используется датчик, контролирующий давление фреона в системе. Датчик (по сути, реле) давления используется для управления подачей электропитания в цепь привода муфты сцепления компрессора.

Если параметр давления хладагента ниже установленного на реле (настройка датчика), мембранный элемент внутри прибора перемещает шток и размыкает контактную группу. Аналогичное действие происходит в случае чрезмерно высокого давления хладагента.

Применяются реле такого типа двух видов:

  1. Двойного переключения (Binary Switch).
  2. Тройного переключения (Trinary Switch).

Второй вариант датчика дополнительно управляет скоростью вращения вала вентилятора, охлаждающего конденсатор. Используется для включения вентилятора конденсатора при заданном давлении хладагента.

Датчики защиты по давлению хладагента: A – реле низкого и высокого давления; B – реле-переключатель скорости вращения вала вентилятора охлаждения; 1 – мембранный элемент; 2 – шток; 3, 4 – линейные контакты; 5 – контактная группа; 6 – давление хладагента; 7 – крыльчатка вентилятора; 8 – датчик-переключатель скорости

Например, включает вентилятор конденсатора на максимальную скорость при давлении хладагента 1770 кПа. Такого типа датчики-реле выполняются индивидуальными приборами или комбинированными на два или три диапазона давления.

Измерительный преобразователь (трансдуктор) давления

Этот вид защитного реле давления представляет собой опорный датчик с герметичным манометром, — ёмкостный датчик давления с встроенным преобразователем сигнала. Прибор обеспечивает выход 0,5 вольта и требует 5 вольт регулируемого источника питания.

При работе трансдуктор подаёт давление посредством отклонения двухкомпонентной керамической диафрагмы, одна половина которой представляет собой конденсатор с параллельными пластинами.

Изменением ёмкости под влиянием давления хладагента в области керамической диафрагмы осуществляется преобразование. Как результат — получается аналоговый выход интегрального сигнала преобразователя.

Трансдуктор автокондиционера классическое исполнение и установка: 1 – трансдуктор установленный на порт заряда; 2 – порт заряда; 3 – электронный преобразователь; 4 – керамическая диафрагма; 5 – порт давления

Электроника датчика давления расположена на гибкой монтажной плате, монтируемой в верхней части устройства. Плата обеспечивает линейную калибровку ёмкостного сигнала от керамической чувствительной диафрагмы.

Преимущества использования трансдуктора по сравнению с реле давления обычного типа очевидны. Здесь постоянно отслеживается давление и отправляются сигналы на электронный модуль управления (ECM — Electronic Control Module). Обычное реле давления, как правило, имеет верхнюю и нижнюю точки отсечки.

Контроллер ECM отключит компрессор автокондиционера при низком или высоком давлении хладагента, а электронное диагностическое оборудование можно использовать для извлечения информации о давлении в системе, что облегчает диагностику проблем.

Автокондиционер и микроконтроллерные системы управления

Микропроцессорные системы трёх конфигураций используются для включения и отключения электрических цепей автокондиционера, управления компрессором и вентилятором конденсатора:

  1. Микропроцессор управления двигателем (ECM).
  2. Микропроцессор управления кузовом (BCM).
  3. Микропроцессор силовой передачи (PCM).

Цифровые сигналы от различных датчиков, контролирующих:

  • скорость двигателя,
  • скорость движения,
  • температуру охлаждающей жидкости,
  • активацию переключателя автокондиционера,
  • реле давления,
  • термостатические переключатели автокондиционера,
  • положение дроссельной заслонки,

постоянно контролируются микропроцессорами ECM, BCM, PCM автокондиционера. Эти цифровые сигналы преобразуются в схеме микропроцессоров в те значения, которые необходимы для выполнения следующих действий:

  • отключения компрессора автокондиционера при высоком / низком давлении в системе;
  • деактивации компрессор автокондиционера при понижении температуры в салоне;
  • активации / деактивации вентилятора конденсатора;
  • увеличения оборотов холостого хода двигателя при включенной системе кондиционирования;
  • отключения компрессора автокондиционера при высоких оборотах двигателя;
  • задержки включения компрессора автокондиционера при запуске двигателя;
  • включения электрического вентилятора двигателя при заданной температуре охлаждающей жидкости;
  • отключения компрессора автокондиционера, если температура охлаждающей жидкости слишком высокая;
  • отключения компрессора автокондиционера при полностью открытом дросселе.

Датчик контроля солнечной нагрузки

Сенсорное устройство контроля солнечной нагрузки автокондиционера представляет собой фотохимический диод (PCD — Photochemical Diode), располагаемый, как правило, в области верхней части приборной панели.

Предназначение этого датчика – формирование и передача сигнала модулю электрического климат-контроля (ECCM — Electrical Climate Control Module) для определения силы солнечного света.

Солнечная нагрузка оказывает существенное влияние на температуру салона автомобиля. Если солнечная нагрузка чрезмерно высока, как сигнализирует датчик солнечной нагрузки, контроллер ECCM активирует функционал.

В частности, увеличивает до максимума скорость вентилятора испарителя и температуру охлаждения автокондиционера, компенсируя дополнительную тепловую нагрузку.

Аналогичное действие происходит, если солнечная нагрузка мала, что опять же определяется датчиком солнечной нагрузки. В таком случае контроллер ECCM автокондиционера снижает скорость вентилятора испарителя и настраивает систему на малое охлаждение.

Обычно совместно с датчиком солнечной нагрузки функционирует другой прибор – датчик температуры уличного воздуха. Прибор фактически представляет собой резистор с отрицательным коэффициентом (NTC) и низким входным напряжением. Датчик изменяет сопротивление в зависимости от температуры уличного воздуха.

Стандартное место размещения там, где обеспечивается максимальный поток окружающего воздуха — обычно позади бампера или зоны передней решетки кузова автомобиля. Этот сенсор автокондиционера выполняет контроль температуры наружного воздуха и связан с преобразователем вывода параметров на дисплей приборной панели.

Автокондиционер: электронно-механическое регулирование

Совместно с электронным контролем температуры автокондиционера обычно работает целый ряд механических устройств, ответственных, за обработку и распределение воздуха внутри салона автомобиля. Среди таких механических систем следует выделить:

  • заслонку воздушного смесителя,
  • управление «печкой» автомобиля,
  • двигатель и механизм воздушного смесителя,
  • вакуумные электромагнитные клапаны.

Таким образом, автокондиционер следует рассматривать достаточно продвинутым с технологической точки зрения устройством, наделённым механизмами и узлами самой разной функциональности и сложности. Нужно помнить – такая техника стабильно совершенствуется по мере совершенства самих транспортных средств.

Оцените статью