- Схема плавной регулировки скорости вентилятора для печки в авто
- Принципиальная схема
- Детали
- РЕГУЛЯТОР ОБОРОТОВ ПЕЧКИ АВТОМОБИЛЯ
- Принципиальная схема регулятора скорости
- Функции регулятора оборотов печки
- Описание работы схемы
- Схема регулятора оборотов вентилятора печки автомобиля
- Регулятор оборотов для вентилятора
- Регулятор оборотов для вентилятора
- ШИМ – регулятор оборотов вентилятора
Схема плавной регулировки скорости вентилятора для печки в авто
Описана схема электронного регулятора, который управляется переменным резистором и позволяет плавно регулировать частоту вращения вентилятора печки, чтобы установить наиболее комфортный режим его работы.
В большинстве недорогих автомобилей скорость вращения вентилятора печки управляется при помощи переключателя всего на три или четыре положения.
При этом, в частности, в автомобилях марки «ВАЗ» уже на первом или втором положении переключателя вентилятор работает слишком сильно и шумно. Да и такого небольшого выбора режимов маловато.
Принципиальная схема
Схема состоит из мультивибратора на микросхеме типа К561ЛА7 и выходного каскада на мощном полевом транзисторе типа IRF9540.
Рис. 1. Принципиальная схема плавного регулятора скорости вращения вентилятора для пеки в автомобиле.
На микросхеме D1 типа К561ЛА7 сделан мультивибратор, скважность выходных импульсов которого можно в очень широких пределах регулировать с помощью переменного резистора R1.
Частота импульсов неизменная и составляет около 400 Гц. Регулируя переменный резистор R1 изменяем соотношение длительностей положительных и отрицательных полуволн за счет различия сопротивлений R -составляющих частотозадающей RC-цепи, коммутируемых диодами VD1 и VD2.
Практически регулировать мощность можно от 90% до 10% от максимального значения. Но в реальности такого широкого диапазона регулировки не требуется. поэтому в схеме есть резисторы R5 и R6 величины сопротивлений которых нужно подобрать при налаживании, так чтобы регулировка происходила в удобном для пользователя диапазоне.
Собственно мультивибратор выполнен на элементах D1.1 и D1.2. С выхода элемента D1 2 импульсы поступают на усилитель мощности, сделанный на оставшихся двух элементах микросхемы D1 — D1.3 и D1.4. Эти элементы соединены параллельно С их выходов импульсы через резистор R4 поступают на затворы полевых транзисторов.
В данной схеме сопротивление R4 уменьшено, чтобы обеспечить больше скорость открывания транзисторов и этим самым снизить их нагрев в момент переходного процесса между закрытым и открытым состоянием. В связи с этим увеличивать напряжение питания схемы выше 15V не рекомендуется так как это приведет к повышенной нагрузке на выходы элементов D1.3 и D1.4 микросхемы D1.
Для того чтобы полностью выключить регулятор в то время когда вентилятор печки не требуется, здесь применен переменный резистор R1 совмещенный с выключателем. Такие переменные резисторы применяются в регуляторах громкости с выключателями питания аналоговой аудиоаппаратуры. Это выключатель RS1.
Резистор R1 подключен таким образом чтобы выключатель RS1 выключался, когда резистор находится в крайнем положении с минимальной частотой вращения вентилятора печки. При этом на выводы 9 и 13 D1.3 и D1.4 поступает напряжение логического нуля через резистор R7. И элементы переходят в фиксированное состояние логической единицы на выходах.
Что приводит к полному закрыванию полевого транзистора VТ1. При повороте ручки переменного резистора из этого положения выключатель замыкается и подает на эти входы элементов D1.3 и D1.4 напряжение от источника питания, то есть, логическая единица. Теперь состояние выходов этих элементов будет зависеть от логического уровня на их других входах.
Напряжение питания, поступающее на микросхему ограничено цепью из резистора R3 стабилитрона VD4 чтобы оно не превышало 13V. Кроме того конденсатор С2 вместе с диодом VD3 способен поддерживать напряжение питания микросхемы в том случае, если общее напряжение питания будет снижаться.
Детали
Транзисторы VТ1 типа IRF9540 можно заменить на IR9Z34, КП785А, КП784А. Микросхему К561ЛА7 можно заменить на К176ЛА7 или CD4011, либо любым аналогом «хх4011».
Стабилитрон КС515А можно заменить на КС215Ж, КС508Б, 1N4744A, TZMC-15. Стабилитрон КС213Ж можно заменить на КС213Б. 1N4743A. BZX/BZV55C-13. Полевой транзистор нужно установить на теплоотвод с площадью охлаждающей поверхности не менее 40 см7.
РЕГУЛЯТОР ОБОРОТОВ ПЕЧКИ АВТОМОБИЛЯ
Предлагаем для самостоятельной сборки проверенную схему регулятора оборотов электродвигателя печки практически для любого автомобиля.
Принципиальная схема регулятора скорости
Функции регулятора оборотов печки
- Регулирование выходной мощности. Способ регулирования – ШИМ. Частота ШИМ – 16 кГц. Число ступеней мощности – 10.
- Индикация уровня светодиодами.
- Плавное изменение мощности.
- Запоминание установленной мощности.
- Настройка скорости изменения мощности.
Описание работы схемы
1. При включении питания устанавливается последняя выбранная мощность. Светодиод LED_0 индицирует готовность устройства к работе. Светодиоды LED_1 — LED_10 отображают заданную мощность вентилятора.
2. Изменение мощности при помощи кнопок PLUS/MINUS.
3. Установка скорости изменения мощности.
3.1. Нажать одновременно на кнопки PLUS и MINUS.
3.2. Начнет мигать светодиод LED_0. Количество включенных светодиодов мощности соответствует выбранной скорости.
3.3. Кнопками PLUS/MINUS изменить скорость.
3.4. Для выхода из режима повторно нажать одновременно на кнопки PLUS и MINUS. Светодиод LED_0 прекратит мигать.
Примечание: индикация обратная. Чем больше включенных светодиодов, тем ниже скорость изменения мощности. Скорость изменения мощности можно записать при прошивке МК в ячейку EEPROM с адресом 0x00. Число должно быть не более 10 (или 0x0A в hex-формате). Если число больше, тогда берется значение по умолчанию 5.
4. Через
3 сек от последнего нажатия на кнопки новые настройки запишутся в энергонезависимую память.
Все файлы находятся в архиве. За подробностями обращайтесь на форум. Автор: Александрович.
Схема регулятора оборотов вентилятора печки автомобиля
Пришла осень, понадобилась печка в автомобиле. Повернул переключатель в первое положение, второе, третье, четвёртое, и обнаружил, что вентилятор работает только в четвёртом положении. Всё бы ничего, да сильно вентилятор шумит на больших оборотах. Открыл альбом схем от автомобиля, схема не замысловатая.
Переключатель вентилятора подаёт плюс питание на двигатель через гасящие резисторы. В четвёртом положении на двигатель подаётся напрямую 12В. Всё ясно, что то произошло с этими резисторами. Почитав статьи на форумах, я заметил, что не только у меня такая проблема. Так же проблемным местом в этой цепи является и сам переключатель, на котором обгорают контакты, плавиться корпус. Конечно, проще заменить эти детали новыми, но качество комплектующих не внушает доверие и повторная поломка может произойти в любой момент. Я решил исключить из цепи проблемные цепи и разработал схему, которая с помощью широтно-импульсной модуляции (ШИМ) регулирует обороты двигателя.
Схема очень простая, в налаживании не нуждается. Сердцем устройства является микроконтроллер PIC16F628A. Весь функционал реализован программно, имеет 11 ступеней: 0% — двигатель остановлен, 10%,20%,30%,40%,50%,60%,70%,80%,90% — шим с соответствующим процентным заполнением, 100% — на двигатель подаётся полное напряжение. Режим отображается десятью светодиодами составленными в виде столбика. Если не требуется «иллюминация», светодиоды HL1-HL10 и резисторы R1-R10 можно не устанавливать.
В микроконтроллере используется аппаратный ШИМ, частота задана 16кГц. Если опустить ниже, может начать «петь» двигатель, если задрать выше — начинают сильнее греться транзисторы, потребуется более сложный драйвер для полевых транзисторов.
Прототип собирал на монтажной плате, так как позволяет быстро собрать и проверить устройство, а так же внести изменение в схему, если что.
Не люблю, когда что то греется, поэтому установил три в параллель силовых ключа.
Блок подключается к бортовой сети всего тремя проводами, масса слаботочная, я подцепил к минусовому проводу прикуривателя (коричневый провод). К плюсовому и выходному проводу я припаял «лепестки» и вставил их в разъём, который снял со штатного выключателя (плюсовой к красно/чёрному проводу, выход к бело/жёлтый, в моей машине).
Кнопки со шкалой так же спаял на монтажной плате небольших размеров. Из машины вытащил заглушку, прорезал в ней прямоугольное отверстие, оставив по миллиметру бортик. В графической программе нарисовал фальшпанель, распечатал её на обычном листе. По размеру вырезал две пластины из прозрачного пластика от упаковки, вставил между ними напечатанную ранее фальшпанель и вставил в заглушку. Подпёр её платой с органами управления и всё это дело залил термоклеем. Конструкция получилась довольно жёсткая. Кнопки нажимаются легко.
Работу устройства можно посмотреть в видео ниже
Прошивка для микроконтроллера находиться здесь!
Регулятор оборотов для вентилятора
Старые отечественные автомобили спроектированы так, что вентилятор, который собственно предназначен для принудительного охлаждения воды, работает совместно с двигателем с помощью ременной передачи. Это означает, что сам вентилятор будет вращаться медленно при низких скоростях, а двигатель будет перегреваться именно в таком режиме работы.
Регулятор оборотов для вентилятора
Как же быть в таких условиях ? Очень часто автолюбители изменяют систему используя отдельный двигатель для вращения пропеллера. В таком случае нужен будет регулятор оборотов вентилятора, это даст возможность управлять оборотами вентилятора, этим многократно увеличив срок службы самого мотора, а также сэкономить довольно большое количество электроэнергии.
Довольно простой регулятор оборотов можно построить на интегральной микросхеме NE555. Микросхема может работать по назначению – как таймер и как генератор прямоугольных импульсов.
Конечное управление осуществляется мощным полевым транзистором, который при желании можно заменить на аналогичный.
Регулировка осуществляется уменьшением и увеличением питающего напряжение, для регулировки этого напряжения имеется переменный резистор на 50 кОм.
Диоды шоттки 4148 можно заменить на полный отечественный аналог КД 522.
Такой регулятор напряжения может управлять довольно мощными электродвигателями постоянного тока и может быть использован в широком спектре.
Сам полевой транзистор может перегреваться в ходе работы, поэтому его желательно установить на теплоотвод или через изолирующую прокладку закрепить к кузову автомобиля.
ШИМ – регулятор оборотов вентилятора
ШИМ – управление очень часто применяется для управления двигателями постоянного тока, от детских электромобилей до регулировки оборотов кулера. В нашей схеме задающим звеном является таймер 555, который подключен по схеме генератора прямоугольных импульсов.
Управление производится с помощью мощного полевого транзистора, который в схеме не критичен и можно заменять в довольно широких пределах – IRFZ24, IRFZ40, IRFZ44, IRFZ46, IRFZ48, IRF3205, IRL3710, IRL3705, IRF1404 и им подобные, в общем аналогов куча.
Регулировка оборотов вентилятора происходит довольно плавно, благодаря принципу ШИМ-управления, для увеличения/уменьшения оборотов просто нужно крутить переменный резистор.
Полевой транзистор нужно установить на теплоотвод, которым может являться и кузов автомобиля, но в таком случае транзистор изолируется от кузова с помощью слюдяной изолирующей прокладки.
Переменный резистор с номиналом 10 килоом с мощностью 0,5 ватт, можно 0,25-1 ватт. Номинал этого резистора (сопротивление) может отклоняться в ту или иную сторону в районе 50-70% – от 4,7кОм и вплоть до 20 кОм.
При желании схему можно собрать и поверхностным монтажом, хотя из-за минимального количества комплектующих элементов размеры самой схемы могут быть не более спичечного коробка.
Для удобного монтажа таймер желательно установить на специализированную пластмассовую петлю – для быстрой замены без использования припоя и паяльника.