Схема прибор температуры двигателя

ВРемонт.su — ремонт фото видео аппаратуры, бытовой техники, обзор и анализ рынка сферы услуг

Home Автоэлектроника Указатели температуры режима двигателя на автомобиле

Указатели температуры режима двигателя на автомобиле


Рис. 1. Электротепловой импульсный указатель температуры: а — схема; б — датчик TM101; в — приемник.

Для контроля теплового режима двигателя на автомобилях устанавливают указатели температуры и сигнализаторы аварийной температуры. На некоторых автомобилях указатели температуры применяют также для контроля теплового режима, смазочной системы, гидравлической трансмиссии, отопителя и т. д.

Рассмотрим два типа указателей температуры которые применяются на автомобилях: электротепловые импульсные и магнитоэлектрические с терморезисторным датчиком.

Электротепловой импульсный указатель температуры состоит из датчика (рис. 1) и стрелочного приемника, обмотки которых соединены последовательно.

Датчик ТМ101 импульсного указателя температуры (рис. 1, б) представляет собой латунный тонкостенный баллон 13, вставленный в корпус 8. В баллоне размещена биметаллическая пластина 10, одним концом закрепленная на изоляторе основания 14. На конце пластины установлен подвижной контакт 11, прижимающийся к неподвижному контакту 12. На пластину намотана обмотка 9 из константановой проволоки диаметром 0,12 мм, имеющей изоляцию из стеклянного волокна. Сопротивление обмотки 14 Ом. Один конец обмотки 9 присоединен к металлической пластине, а второй через токоведущую деталь 15 — к выводному зажиму 17, закрепленному на изоляторе 16. Неподвижный контакт 12 соединен с корпусом датчика. Контакты датчика изготовлены из серебра (75 %) и кадмия (25 %).

Приемник термометра (рис. 1, в) имеет П-образную биметаллическую пластину 26, которая одним концом закреплена на регулируемом секторе 23, а другим шарнирно соединена со стрелкой 21. Сектор, с жестко присоединенной к нему биметаллической пластиной, может смещаться при регулировке относительно его оси 27 крепления при помощи зубьев 22. Второй сектор 18 с упругой пластиной 19 служит шарнирной опорой для стрелки и прижимает ее к крючку 20 на конце биметаллической пластины. Для регулировки приемника второй сектор имеет зубья 28.

Плечо биметаллической пластины, соединенное с сектором 23, называют термокомпенсационным, плечо, соединенное со стрелкой, — рабочим. На рабочее плечо биметаллической пластины навита константановая обмотка 24 сопротивлением 40 Ом. Оба конца этой обмотки выведены к зажимам 25 и 29 приемника.

При нормальной окружающей температуре, когда указатель не включен в цепь, контакты 7 (см. рис. 1, а) датчика 5 находятся в замкнутом состоянии, рабочее плечо 3 биметаллической пластины приемника 1 не изогнуто и стрелка 2 находится в крайнем правом положении шкалы за отметкой 110 °С.

При включении указателя в цепь ток, проходящий через обмотки 4 и 6, нагревает биметаллические пластины датчика и приемника. При этом пластина датчика, изгибаясь, свободным концом размыкает контакты и прерывает ток в цепи. Несколько охладившись, она вновь замыкает контакты, и ток снова будет нагревать пластины. При постоянной окружающей температуре установится определенная частота размыкания контактов, причем отношение продолжительности замкнутого состояния контактов к продолжительности времени цикла будет зависеть от окружающей температуры. Чем выше окружающая температура среды, в которой находится биметаллическая пластина датчика, чем медленнее она остывает после размыкания контактов от проходящего по обмотке тока, тем быстрее нагревается этим током после замыкания контактов. Силу эффективного тока, нагревающего термобиметаллическую пластину приемника, можно определить по формуле:

где I0 — сила тока, протекающего по цепи при замкнутых контактах; Тз и Тр — время замкнутого и разомкнутого состояния контактов.

При включении прибора, когда температура датчика низкая, эффективный ток, значительно нагревая рабочее плечо биметаллической пластины приемника, вызовет ее изгиб и смещение стрелки влево в область малых температур на шкале. С повышением температуры датчика сила тока Iэф будет уменьшаться, нагрев рабочего плеча биметаллической пластины приемника и ее изгиб будут меньше, а показания прибора увеличатся. При температуре датчика выше 110 °С его биметаллическая пластина не будет замыкать контакты совсем, ток в приборе прекратится, и под действием биметаллической пластины приемника стрелка установится в крайнее правое положение.

Преимуществом электротепловых импульсных указателей являются простота конструкции и малая стоимость; сопротивление соединительных проводов и переходных контактов не влияет на точность показаний.

Электротепловые импульсные приборы обладают следующими недостатками: контакты датчика при работе создают помехи радиоприему; точность показаний зависит от напряжения питания; малый размах шкалы приемника (до 45 что затрудняет чтение показаний.

Читайте также:  405 двигатель каналы масла

Магнитоэлектрические указатели температуры


Рис. 2. Магнитоэлектрический указатель температуры:
а — датчик ТМ100 с терморезистором; б — измерительный элемент приемника; в — вид на приемник со снятой шкалой; г — электрическая схема магнитоэлектрического указателя температуры.

Позднее, вместо этих приборов стали устанавливать магнитоэлектрические указатели. Датчик (рис. 2, а) этого указателя представляет собой баллон 1, к дну которого прижат токоведущей пружиной 2 терморезистор 3. Сопротивление терморезистора при изменении его температуры меняется в широких пределах (50—450 Ом).

Приемник (рис. 2, б и в) имеет каркас 4, состоящий из двух пластмассовых половин, соединенных стяжными винтами 10. На пластины намотаны обмотки трех измерительных катушек 8. Вторая обмотка расположена под углом 90° к двум другим. Для повышения чувствительности прибора первая и третья катушки имеют противоположное направление витков обмоток, вследствие чего возникающие магнитные потоки направлены навстречу один другому. Внутри каркаса размещен постоянный магнит 9, установленный на одной оси 7 со стрелкой. Магнит может поворачиваться, ориентируясь вдоль магнитных силовых линий магнитного поля трех катушек.

В нижней половине каркаса находится подпятник 11 оси дискообразного магнита и стрелки. Один конец оси магнита помещен в отверстии мостика 6, который закреплен на каркасе и служит опорой шкалы прибора.

Для возврата подвижной системы в нулевое положение при выключенном приборе в нижнюю половину каркаса встроен небольшой магнит. Каркас в сборе с катушками и магнитом размещен в экранирующем цилиндре 5 из низкоуглеродистой стали для исключения воздействия на магнит посторонних магнитных полей и устранения влияния магнитного поля катушки на показания других приборов.

Измерительный узел 12 приемника монтируют в комбинации приборов или в корпусе самостоятельного прибора. В обоих случаях концы обмоток присоединены к выводным зажимам и резисторам 14 и 16. Приемник имеет регулятор 13 с магнитом. На приборной панели автомобиля, указатель температуры освещает лампа, расположенная в гнезде 15.

При включении датчика и приемника в цепь питания ток проходит по двум параллельным цепям: обмотки L1 и L2 приемника — термокомпенсационный резистор R: обмотка L3 приемника — терморезистор RT датчика (рис. 2, г). Магнитные потоки обмоток L1 и L3 направлены в противоположные стороны.

В корпусе приемника (на напряжение 12 В) вместе с механизмом размещен термокомпенсационный константановый резистор R, который обеспечивает стабильность показаний при изменении температуры обмоток приемника. В корпусе приемника, рассчитанного на 24 В, кроме того, установлен дополнительный резистор 16 (см. рис. 2, в), включенный последовательно с обмотками приемника. Такая схема включения позволяет унифицировать конструкцию и обмоточные данные указателей температуры для применения их в системах электрооборудования автомобилей на напряжение бортовой сети 12 и 24 Вольт.

Сигнализатор аварийной температуры автомобиля


Рис. 3. Сигнализатор аварийной температуры:
а — электрическая схема автомобильного сигнализатора аварийной температуры; б — датчик ТМ111; в — датчик РС403-БГ; 1 — сигнальная лампа; 2 — биметаллическая пластина; 3 — контакты; 4 — биметаллическая пластина; 5 — изолятор; 6 — выводной зажим; 7 — тарельчатый контакт; 8 — контакт; 9 — прижимная шайба; 10 — латунный корпус; 11 — баллон; 12 — токоведущая пластина; 13 — регулировочный винт; 14 — выводной зажим.

Сигнализатор аварийной температуры (рис. 3, а) состоит из датчика и сигнальной лампы 7. Датчик имеет биметаллическую пластину 2, управляющую контактами 3, при замыкании которых включается сигнальная лампа 1. Конструкция автомобильных датчиков температуры двух типов показана на рис. 3, б и в. Датчик РС403-Б (см. рис. 3, в) применяют для контроля температуры масла. Температуру включения [(140 ± 3) °С] можно регулировать в процессе эксплуатации с помощью регулировочного винта 13. Датчик ТМ111 (см. рис. 3, 6) предназначен для контроля температуры жидкости (КамАЗ). Регулировка замыкания контактов (при температуре 98—104 °С) производится перемещением тарельчатого контакта 7.

Сигнализатор температуры установлен в верхнем бачке радиатора, а в двигателях с воздушным охлаждением — в смазочной системе. Сигнализаторы применяют также для контроля температуры масла в автоматической коробке передач (автобусы ЛиАЗ-677). Аналогичные датчики (ТМ108) используют для включения электровентилятора в системе охлаждения двигателя.

Датчики сигнализаторов аварийной температуры работают в системах электрооборудования автомобиля с напряжением 12 и 24 В с лампами силой света 1—1,5 кд.

Основные параметры некоторых датчиков указателей и сигнализаторов температуры приведены в табл. 1, приемников указателей температуры в табл. 2.

Читайте также:  Устройство двигателя триммера 52 поршневой forward
Датчик Пределы
изменения
температуры, °С
Температура
замыкания
контактов, °С
Номинальное
напряжение, В
Чувствительный
элемент
Автомобили
ТМ100-А, -В 40-120 12; 24 Терморезистор Всех марок
ТМ101 40-110 12 Биметалл То же
ТМ102 112-118 12; 24 >> Зил 130; 131
ТМ106 20-120 12 Терморезистор ВАЗ
ТМ108* 89-95 12 Биметалл ВАЗ 2103, 2106;
2107, 2108;
ЗАЗ-1102
ТМ111 98-104 12; 24 >> Всех марок
ТМ112 102-110 12; 24 >> МАЗ 504Б, 516Б;
ГАЗ 3102, 53-11
ТМ113 110-118 12; 24 >> ЗИЛ-130Г
11.3842** -40?+40 12; 24 Терморезистор Северного
исполнения

* Датчик выключения электровентилятора в системе охлаждения двигателя.
** Датчик температуры электролита аккумуляторных батарей.

Датчик температуры охлаждающей жидкости: назначение, устройство, принцип работы

Работа мотора в машине сопряжена с постоянным процессом сгорания топливной смеси. Из-за чего двигатель внутреннего сгорания (ДВС) может перегреться и выйти со строя. Для предотвращения подобных инцидентов ДВС принудительно охлаждается посредством циркуляции специальной жидкости. А вот контроль за ее состоянием производит датчик температуры охлаждающей жидкости (ДТОЖ).

Назначение

Такой датчик предназначен для контроля состояния двигателя авто посредством фиксации температурных изменений жидкости охлаждения. С этой целью его размещают в антифризе, где происходит непосредственное взаимодействие чувствительного элемента и слоя охлаждающей жидкости. Также заметьте, что в некоторых автомобилях размещают два сенсора по отношению ко входному и выходному патрубку системы охлаждения, за счет чего компьютер производит сравнение показаний.

Датчик передает данные измерений на блок управления для дальнейшей регулировки работы системы. Логический блок принимает решение о продолжении работы автомобиля в том же режиме или об уменьшении параметра, влияющего на фактора нагрева. Помимо электронных моделей, существуют и механические сенсоры, которые предназначены не для взаимодействия с логическим блоком, а для вывода информации на термометр в салоне. В случае с механическими моделями водитель сам принимает решение об изменении режима вождения или полной остановке агрегата.

В зависимости от модели машины, датчик предназначается для выполнения таких функций:

  • Контроль температуры в конкретный момент времени для системы охлаждения.
  • Влияние на выбор режима работы, в зависимости от сложившейся ситуации.
  • Подача сигнала к аварийному включению или отключению мотора, при резком нарастании или падении температуры.
  • Контроль опережения или запаздывания зажигания – позволяет регулировать интенсивность выброса выхлопных газов и нагрузку на поршневую систему.
  • Подача сигнала на обогащение топливной смеси в случае недопустимого снижения температуры охлаждающей жидкости.

Устройство и принцип работы

В отличии от устаревших моделей, современные приспособления для контроля температуры, основываются на работе термистора. В соответствии с п.22 ГОСТ 21414-75 это такой нелинейный резистор, который изменяет величину собственного омического сопротивления, в зависимости от степени нагрева или охлаждения.

Рис. 1. Устройство датчика температуры охлаждающей жидкости

Для датчика температуры охлаждающей жидкости применяются резистивные элементы с отрицательным температурным коэффициентом. Это обозначает, что в отличии от классических проводниковых материалов, где с нагреванием омическое сопротивление возрастает, повышение температуры датчика приводит к уменьшению сопротивления.

К примеру, измеряя показания при +20 ºС сопротивление термистора будет составлять 3,5 кОм. При нагревании антифриза до +90 ºС сопротивление датчика упадет до отметки 0,24 кОм. Но, существуют и исключения, к примеру, у автомобилей марки Renault датчик имеет положительный температурный коэффициент.

Принцип действия датчика температуры охлаждающей жидкости базируется на следующей схеме:

Рис. 2. Принцип действия датчика температуры охлаждающей жидкости

  1. В состоянии покоя двигателя охлаждающая жидкость будет иметь сопоставимую с окружающей средой температуру. Сопротивление термистора датчика Rt останется на максимальной отметке и поданное напряжение практически не выдаст ток в цепь индикации логического блока.
  2. При замыкании контактов V в замке зажигания вместе с запуском двигателя будет подано напряжение от аккумулятора А на датчик температуры. По мере нарастания оборотов, сопротивление термистора Rt будет снижаться в соответствии с его характеристикой.
  3. В случае превышения допустимого предела температур, Rt перейдет в режим проводимости. В соответствии с законом Ома величина тока, протекающего через термистор, возрастет. Сигнал придет на логический блок и будет подана команда для снижения объема, впрыскиваемого топлива, или уменьшение числа оборотов коленчатого вала.
  4. При снижении оборотов и мощности мотора, со временем камера сгорания охладится и ДВС придет в норматив температуры. Охлаждающая жидкость остынет и у термистора Rt снова возрастет сопротивление. Величина тока в цепи индикации логического блока снова уменьшится, и автомобиль перейдет в нормальный режим работы.
Читайте также:  Моторное масло для двигателя b12d1

В зависимости от величины падения напряжения на термисторе датчика Rt, будет оцениваться текущий температурный режим. В данном примере мы рассмотрели электрический метод измерения, но у некоторых типов датчиков может применяться и механический, работающий за счет температурного расширения.

Где находится?

Для производства каких-либо операций с датчиком температуры охлаждающей жидкости необходимо четко представлять себе место его установки. Следует отметить, что точка установки будет отличаться в зависимости от модели автомобиля. Поэтому для поиска лучше обратиться к инструкции производителя, где указана позиция соприкосновения с охлаждающей жидкостью.

Рис. 3. Место установки датчика температуры охлаждающей жидкости

Наиболее распространенным местом установки является:

  1. головка блока цилиндров или выпускной патрубок;
  2. верхний шланг радиатора;
  3. корпус термостата;
  4. в некоторых ситуациях может устанавливаться два датчика температуры– на входе и на выходе.

Место установки предусматривает обеспечение контакта чувствительного элемента с охлаждающей жидкостью. Но, в случае утечки антифриза из системы, контакт может нарушиться и контроль температуры прекратиться. В результате этого вы получите некорректные показания, что может повлечь сбой в работе системы.

Признаки поломки

Как и неисправности любого устройства в автомобиле, выход со строя сенсора температуры охлаждающей жидкости может привести к нежелательным последствиям.

При движении машины поломка может проявляться как:

  1. проблематичный запуск мотора в холодную погоду;
  2. нетипичные звуки от выхлопных газов только запущенного мотора;
  3. при достижении максимальной температуры мотор глохнет;
  4. не запускается вентилятор охлаждения при нагревании ДВС;
  5. превышение расхода топлива сверх установленной нормы.

Современные авто выводят данные о нарушении температуры охлаждающей жидкости на дисплей. Причиной неисправности может стать как механическая поломка (сорванная резьба, растрескивание корпуса, перегорание термистора), так и электрическая (короткое замыкание в измерительной цепи или обрыв провода). Чтобы убедиться в правильности вашего предположения, проверьте датчик, и, при необходимости замените его новым.

Проверка и замена

Следует отметить, что появление характерных признаков может обуславливаться и другими поломками. К примеру, поломкой вентилятора охлаждения или нехваткой охлаждающей жидкости. Поэтому для начала необходимо проверить работоспособность и правильность показаний датчика температуры охлаждающей жидкости.

На практике существует довольно большое число методов, одни из которых вы можете реализовать в домашних условиях. Другие, как съем осциллограммы, вам проведут только на станциях техобслуживания. Самостоятельно произведите внешний осмотр датчика охлаждающей жидкости – на нем должны отсутствовать следы ржавчины, подтеки антифриза, трещины и прочие следы.

Если внешне датчик исправен, проверьте его с помощью мультиметра, для этого:

  • Отсоедините шлейф от контактов датчика – вам необходимо получить доступ для проведения замеров.

Рис. .4. Отсоедините шлейф от контактов датчика

  • Измерения производятся изначально при холодном ДВС. Если это условие не обеспечено, выкрутите датчик с посадочного места и опустите чувствительный элемент в холодную воду.

Рис. 5. Выкрутите датчик с посадочного места

  • Подключите щупы мультиметра к выводам датчика и замерьте величину омического сопротивления.

Рис. 6. Подключите щупы к выводам датчика

  • Затем запустите ДВС и дождитесь включения вентилятора охлаждения, если вы выкрутили датчик температуры, поместите его в кипяток. Повторно замерьте величину переходного сопротивления.

Рис. 7. Опустите датчик в горячую воду и повторно измерьте сопротивление

  • Сравните полученные данные сопротивления для вашей модели автомобиля. К примеру, ниже приведена такая таблица:

Таблица: зависимость сопротивления и падения напряжения датчика температуры от степени нагрева

Температура ОЖ (°С) Сопротивление (Ом) Напряжение (В)
4800 — 6600 4,00 — 4,50
10 4000 3,75-4,00
20 2200 — 2800 3,00 — 3,50
30 1300 3,25
40 1000-1200 2,50 — 3,00
50 1000 2,5
60 800 2,00-2,50
80 270 — 380 1,00-1,30
110 0,5
разрыв цепи 5,0 ±0,1

В рассматриваемом примере в холодном состоянии при +10 ºС сопротивление будет составлять 4000 Ом. После того, как вы опустите его в кипяток, исправный датчик будет иметь сопротивление в пределах 200 – 270 Ом. Если показания кардинально отличаются, налицо поломка сенсора, в таком случае его необходимо заменить.

Для замены датчика температуры охлаждающей жидкости из системы охлаждения слейте антифриз. Отключите шнур питания, если еще не отсоединили его. Затем, при помощи торцевого или рожкового ключа выкрутите сам сенсор.

Установите новый датчик охлаждающей жидкости в посадочное место, обязательно наденьте прокладку. Плотно зажмите его ключом по резьбе до упора.

Рис. 8. Плотно зажмите ключом новый датчик

Замена окончена, можете подключить питающий шнур и залить обратно охлаждающую жидкость.

Оцените статью