- Плавное включение фар и габаритных огней автомобиля. Устройство для увеличения срока эксплуатации автомобильных ламп
- Электронное реле с функцией плавного включения света фар
- Схема электронного реле
- Режимы работы схемы
- Алгоритмы работы схемы
- Удержание нагрева после выключения
- Быстрый нагрев
- Тепловой режим устройства
- Процесс изготовления реле
Плавное включение фар и габаритных огней автомобиля. Устройство для увеличения срока эксплуатации автомобильных ламп
Недавно один из наших форумчан, Rus_lan, выложил на форум интересную штуку — устройство для плавного включения фар автомобиля. Штука эта многих сразу же заинтересовала (и меня в том числе), поэтому тему было решено более подробно раскрыть и описать в отдельной статье.
Итак, если вы автолюбитель, то вам наверняка приходится менять в своём автомобиле различные лампы накаливания: дальний и ближний свет, габаритные огни, поворотники…
Поскольку наиболее активно в автомобиле используются лампы ближнего света и габаритных огней, то и менять их приходится чаще всего.
Хорошо известно, что перегорают лампы обычно в момент включения, причём зимой гораздо чаще, чем летом. Почему так происходит?
Дело в том, что рабочая температура нити лампы накаливания составляет более двух с половиной тысяч градусов цельсия. Именно при такой температуре нить и начинает светиться. До рабочей температуры нить нагревается протекающим по ней током. Если нагрев происходит слишком быстро и неравномерно, то температуры соседних участков нити не успевают выравниваться за счёт теплопроводности, между соседними участками создаётся большой перепад температур, расширяются эти участки сильно неравномерно, в результате чего в нити возникают большие механические нагрузки и она рвётся. Похожий эффект можно наблюдать, если плеснуть холодной водой на раскалённый камень. Внешние слои камня при этом резко охлаждаются и сжимаются, в то время, как внутренние ещё остаются горячими и расширенными. В результате, как мы знаем, камень трескается.
Кроме эффекта, описанного выше, механические нагрузки возникают также из-за магнитного взаимодействия витков спирали, сила которого опять же пропорциональна силе тока.
Хорошо, ну а при чём же здесь всё-таки момент включения? Всё очень просто. В момент включения, когда нить холодная, её сопротивление значительно ниже, чем сопротивление в нагретом состоянии, соответственно и протекающий в это время ток значительно больше рабочего тока. Следовательно, в момент включения мы имеем максимальную скорость нагрева нити, а также максимальное магнитное взаимодействие витков. Зимой начальная температура, а значит и начальное сопротивление нити, ниже, чем летом, следовательно начальный ток ещё больше.
Как с этим бороться? Давайте подумаем. Избавиться от неравномерного нагрева нити мы не можем, поскольку он возникает вследствии дефектов самой нити (например, если нить неравномерна по толщине, то более тонкие участки имеют большее сопротивление и нагреваются быстрее и сильнее). Однако, мы вполне можем уменьшить скорость нагрева и магнитное взаимодействие между витками спирали. Для этого нужно всего лишь ограничить протекающий через нашу лампочку ток, чтобы он, в то время, пока спираль нагревается, не превышал рабочего значения (или хотя бы превышал его незначительно). Именно такое устройство, позволяющее при включении плавно увеличивать ток через лампочку, и предложил Rus_lan.
- C1 — конденсатор 47мкФ x 16В
- R1 — резистор 68кОм
- R2 — резистор 6,8кОм
- R3 — резистор 24кОм
- T1 — полевой транзистор FDB6670AL
- D1 — диод (любой)
Работает это устройство следующим образом: за счёт резисторов и конденсатора, установленного параллельно затвору полевика, напряжение на затворе транзистора растёт очень медленно, соответственно также медленно этот транзистор и открывается, что, в свою очередь, обеспечивает плавное увеличение напряжения на лампе и тока через неё. Делитель R1R3 задаёт максимальное напряжение на затворе. Резистор R2 дополнительно увеличивает время включения и защищает затвор транзистора, предотвращая любые возможности возникновения резких бросков тока через него.
Схема выложена в том варианте, в котором Rus_lan выложил её на форум, но лично я бы в ней кое-что изменил. Дело в том, что электролитические конденсаторы крайне плохо переносят низкие температуры (а у нас, например, зимой морозы -30 0 С и ниже совсем не редкость), поэтому я считаю, что лучше взять какой-нибудь керамический кондёр. Понятно, что найти керамику с такой ёмкостью нереально, но в таком случае можно взять конденсатор с ёмкостью поменьше, а уменьшение ёмкости скомпенсировать пропорциональным увеличением резисторов R1, R3.
Собранное устройство выглядит вот так:
А вот так оно выглядит в работе (в автомобильной фаре):
На этом всё, как говорится «ни гвоздя, ни жезла», удачи!
Электронное реле с функцией плавного включения света фар
Каждый водитель знает, как порой утомляет желтизна обычных ламп накаливания в фарах автомобиля. Устанавливать ксеноновые лампы нежелательно, хотя они и имеют низкое потребление и большой срок службы. Из-за сильного ослепления водителей встречного транспортного потока возрастает вероятность аварийных ситуаций. Хорошее и не чрезмерно белое свечение дают галогенные лампы.
Их основной недостаток – повышенное энергопотребление и тепловыделение. Кроме того, как и все лампы на основе нити накаливания, они имеют срок службы вдвое меньше чем ксеноновые.
Физика процесса перегорания нити накаливания проста. Всякий проводник при нагревании увеличивает сопротивление проходящему току. Нить накаливания в рабочем режиме раскаляется и обеспечивает необходимую мощность свечения. При этом её сопротивление обеспечивает ток в цепи недостаточный для плавления металла нити. При включении, сопротивление холодной лампы в 12–13 раз меньше рабочего и соответственно во столько же раз больше электрический ток. Именно в этот момент чаще всего и происходит перегорание нити накаливания.
Идеально было бы плавно увеличивать напряжение вслед за разогревом и соответственно возрастанием сопротивления. Эта идея не нова – в бытовых светильниках давно применяются электронные устройства, обеспечивающие плавное включение и продлевающие срок эксплуатации ламп накаливания. Примеры схем подобных устройств можно найти в интернете в большом количестве. Применяя их для автомобиля, нужно учесть, что лучше использовать замену штатной сменной детали принципиально новой без необходимости переделки основной проводки.
Эта идея была осуществлена на автомобиле марки KIA Cerato LD выпуска 2008 г. с галогенными лампами Philips CrystalVision H4 простой заменой штатного реле управления ближним светом на доработанный аналог в соответствии с новыми требованиями.
Схема управления фарами с некоторым упрощением представлена на рисунке.
Красным цветом выделено легкосъемное реле, которое и требует доработки. Удобно что через контакт «30» есть всегда питание +12 В, а через «86» и выключатель света или через «87» и холодные лампы, с практически нулевым сопротивлением, всегда есть соединение на массу.
Технические требования были выдвинуты следующие:
• потребление электронного реле при отключенном зажигании в пределах 5–7 мА, обеспечивающее небольшой ток утечки для защиты аккумулятора от разряда;
• при первом включении фар должен обеспечиваться плавный нагрев нитей ламп в течение 10–12 сек.;
• при отключении света менее чем на 0,5 сек. и последующем его включении, если зажигание не выключалось, задержка должна составлять 0,5 сек. с выходом на 80% мощности плюс 1 сек. для достижения 100% уровня свечения;
• при включенном двигателе 0,5 сек. поддерживается 50% мощность ближнего света после его отключения.
Последний пункт требует пояснения. В стеклянных колбах ламп модели H4 совмещены спирали ближнего и дальнего света. При этом схема проводки автомобиля выполнена так, что они могут включаться только попеременно. Вся конструкция после первого включения поддерживается в достаточно горячем состоянии и уже не требуется большая задержка на разогрев нитей. Это важно при кратковременном мигании дальним светом. После него ближний свет включится без задержки и не создаст неудобств дорожному движению в тёмное время суток.
Схема электронного реле
Реализация идеи нового реле представлена на схеме.
Здесь применена широтно-импульсная модуляция (ШИМ) в управлении ключевым элементом питания нагрузки. Роль электронного ключа должен выполнять элемент, обеспечивающий коммутацию постоянного напряжения 12 В с номинальным током нагрузки 12 А и кратковременным импульсным до 150 А. При этом необходимо малое падение мощности на нём в открытом состоянии и напряжение управления не более 5 В с малыми токами, работающими на слабо ёмкостную нагрузку.
Выбранный транзистор МОП с p-каналом IRF9310 отвечает этим требованиям и имеет следующие характеристики:
• напряжение сток-исток 30 В;
• ток сток-исток 20 А;
• пороговое напряжение затвор-исток 2,4 В;
• сопротивление открытого канала 6,8 мОм;
• входная ёмкость затвора 5250 пФ;
• максимальная рассеиваемая мощность 2,5 Вт.
На схеме это транзистор VT4. Резистор R12 обеспечивает его надёжное и быстрое запирание. Управление ШИМ обеспечивает микроконтроллер ATtiny13A с рабочей частотой 1,2 МГц. Потребляемый микросхемой ток не превышает 1 мА. Её максимальный выходной ток 40 мА обеспечивает надёжное срабатывание ключевого элемента VT4 и ограничивается резистором R11 в пределах 33–35 мА.
Питание -5 В для ATtiny13A обеспечивается линейным стабилизатором 79L05 рассчитанном на ток нагрузки 100 мА. Конденсатор C2 сглаживает пульсации тока в моменты срабатывания транзистора VT4. Его емкость допускается 1,0–2,2 мкФ. Этот элемент единственный, который потребляет много энергии во всей схеме – до 6 мА тока покоя.
Постоянное питание +12 В для всей схемы осуществляется только при включенном зажигании через VT1. Здесь применён полевой n-канальный транзистор IRLML0030. Можно использовать и другой рассчитанный на напряжение до 20 В при максимальном токе нагрузки 5 А. На массу исток транзистора подключается или через холодные лампы фар и диод VD3 или посредством включателя фар через VD4 и R6.
Сигналы управления микроконтроллера подаются на входы PB3 и PB4. Через VT2 информируется о выключении зажигания и необходимости выключения света фар. Через VT3 подаётся сигнал о включении фар.
Конденсатор C1 обеспечивает, после кратковременного отключения ближнего света, накал ламп на уровне 50% в течение 0,5 сек. Используется танталовый малогабаритный электролитический конденсатор, рассчитанный на напряжение 35 В. Можно использовать и меньшей ёмкости – до 10 мкФ.
Режимы работы схемы
Выключено зажигание и фары – закрыты транзисторы VT4 и VT1.
Зажигание включено. Открывается транзистор VT1 сигналом через резистор R1 и диод VD1. Через него заряжается конденсатор C1 по цепи резистора R4, диода VD3 и холодные лампы фар. Через резистор R2 и диод VD2 на транзистор VT2 подаётся напряжение для его открытия и на вход PB4 микроконтроллера подаётся сигнал о включении зажигания. Контроллер переходит в ожидание включения ближнего света фар.
Включаются фары ближнего света. Транзистор VT3 открывается сигналом через резистор R9 и микроконтроллер на входе PB3 получает сигнал о включении фар. Контроллер включает силовой транзистор VT4, зажигающий лампы. За счёт ШИМ обеспечивается их плавный нагрев, в течение 10–12 сек. Схема переходит на питание по цепи VD4 и R6.
Выключается ближний свет. Резистор R10 закрывает транзистор VT3, и микроконтроллер, получив сигнал на входе PB3, включает ШИМ в режим 50% нагрева ламп. Конденсатор C1, периодически подзаряжаясь через диод VD3 и фары в моменты переключения транзистора VT4, удерживает VT1 это время в открытом состоянии.
Выключается зажигание. Через резистор R5 транзистор VT2 запирается. Сигнал на входе PB4 заставляет микроконтроллер закрыть транзистор VT4 и перейти в ждущий режим. Резистор R3 обеспечивает закрытие транзистора VT1, который обесточивает конденсатор C1. Свет фар отключается.
Зажигание выключено при включенном переключателе ближнего света. Транзисторы VT1 и VT4 в закрытом состоянии обеспечивают отключение фар. Утечка тока происходит только через R9, R10 в пределах 1,7 мА, что не влияет существенно на разряд аккумулятора.
Алгоритмы работы схемы
Медленный нагрев при первом включении
При этом происходит следующее:
• первые 3 сек. плавно нарастает свечение ламп до 30% за счёт работы ШИМ;
• уровень достигнутого накала 2 сек. поддерживается неизменяемым для прогрева ламп;
• в следующие 3 сек. плавно повышается до уровня 80% и фары дают удовлетворительный уровень освещения;
• за последние 4 сек. достигается 100% мощность
Удержание нагрева после выключения
При отключении фар в течение 0,5 сек. обеспечивается 50% питания ламп. Затем за 0,5 сек. нагрев плавно падает до нуля.
Быстрый нагрев
Этот режим возможен только при условии, что лампы находятся в состоянии 50% мощности накала – в удержании нагрева. При включении света плавно за 0,5 сек. достигается мощность 80% – достаточная для освещения дороги. А уже по истечении 1,5 сек. лампы горят в полную мощность.
В любом случае при уменьшении мощности накала менее 50% лампы гаснут. Последующее их включение происходит по циклу медленного нагрева. Если в процессе нагрева медленного или быстрого выключатель фар размыкается в момент, когда мощность на лампах превысила 50%, то начинается цикл удержания.
Тепловой режим устройства
Транзистор IRF9310 в открытом состоянии имеет сопротивление всего 6,8 мОм. При токе 11 А, потребляемым фарами, рассеиваемая мощность не превышает 0,822 Вт. По спецификации транзистора для отвода тепла нужна медная пластинка площадью 6,5 см2. В малом объёме реле это сделать затруднительно и для охлаждения используется ножка реле, к которой припаивается как можно ближе сток транзистора. При этом обеспечивается приемлемый нагрев до 55–60 °C.
Программа контроллера ATtiny13
Конечный автомат, реализуемый программой, предусматривает 6 состояний:
1. ожидание включения фар при выключенном зажигании;
2. плавный нагрев;
3. ожидание очередного включения света;
4. быстрый нагрев;
5. полное включение ламп;
6. выключение с удержанием.
Выбор состояний определяется обработкой прерываний в момент переполнения таймера. Управление ШИМ реализовано таймером в режиме phase-correct PWM. Таймер и контроллер имеют рабочую частоту 1,2 МГц, а выходной сигнал ШИМ составляет 2353 Гц. Микроконтроллер при уменьшении питания ниже 2,7 В переходит в состояние сброса. Для этого в настройках задействована защита по напряжению Brown-out detector. Установлена задержка 0,064 сек. для возвращения автомата в исходное состояние после сброса.
Процесс изготовления реле
Фирма Kia применяет не унифицированное реле, и оно поставляется в магазины по заказу за немалые деньги.
Выходные лапки у него симметричны. Для катушки и рабочих контактов они расположены попарно по диагоналям. Поэтому нет разницы, какой стороной вставлять устройство в посадочные гнёзда. Для нового электронного реле важна полярность подключения, поэтому на корпусе необходимо сделать метки для правильной установки. Ошибочное положение приведёт к выходу из строя электронной части.
Штатное реле разбирать не нужно. Дело в том, что в этой машине есть шунт для опции ходовых огней в дневное время. По форме и подключению этот шунт-заглушка соответствует реле ближнего света.
Их меняют местами, а доработка этого шунта выполняется с меньшей затратой сил. Кроме того, он стоит недорого и на всякий случай может быть приобретён в магазинах.
Далее, выпиливают металлический шунт, оставляя лапки для крепления будущей платы.
Сама плата сделана из двухстороннего фольгированного стеклотекстолита с размерами, позволяющими установить её в новое реле. Для этих же целей применён двухсторонний монтаж с использованием малогабаритных радиоэлементов. Плата имеет размеры 19,70 Х 18,00 мм.
Вот её изображение с двух сторон.
Для изготовления применена Лазерно-Утюжная Технология (ЛУТ). Для шаблона использована глянцевая фотобумага, на которой печатается рисунок лазерным принтером. Разводка дорожек переносится на зачищенную мелкой наждачной бумагой обезжиренную поверхность текстолита посредством горячего утюга.
После травления, сверления и лужения плата имеет следующий вид.
При лужении нужно соблюдать осторожность, то бы не перегреть и не повредить дорожки. Лучше использовать минимальный нагрев паяльника и припой с низкой температурой плавления – ПОСВ 33, сплав Розе или Вуда.
На плату припаиваются радиоэлементы.
Затем она устанавливается в корпус реле.
Сверху на корпусе необходимо установить метку для правильной установки в автомобиль.
Для изготовления используются радиоэлементы:
• микроконтроллер AVR – ATtiny13A;
• стабилизатор 79L05 (MC79L05ACD);
• транзисторы VT1, VT2, VT3, VT4 – IRLML0030, 2N7002, IRLML5103, IRF9310 соответственно;
• диоды BAS321;
• конденсатор C1 – танталовый электролитический 10–22 мкФ на 35 В;
• конденсатор C2 – керамический 1,0–2,2 мкФ ;
• резисторы ОМЛТ 5% 0.125Вт.
Для реализации работы устройства по требуемому алгоритму необходимо перед установкой на плату запрограммировать микроконтроллер прошивкой. Программирование осуществляется любым программатором, который поддерживает микросхему ATtiny13A. Из промышленных подойдут, например, модели PICPROG, ChipProg+ или «Мастер».
Распечатку печатной платы удобно производить через программу Sprint-Layout. Схема разводки платы для этой программы представлена в этом файле.
Текст используемой программы контроллера находится по адресу. Его можно открыть программой Atmel Studio 6.0.
Идея плавного включения фар может быть применена на любом автомобиле. Нужно только скорректировать технические решения в соответствии с применяемой электроникой.