- Устройство автомобилей
- Схемы включения обмоток стартера
- Независимое и параллельное возбуждение
- Последовательное возбуждение
- Возбуждение от постоянных магнитов
- Виды, устройство и принцип работы стартера автомобиля
- Устройство стартера
- Основные компоненты
- Принцип работы
- Устройство бендикса
- Виды стартеров
- Основные неисправности
Устройство автомобилей
Схемы включения обмоток стартера
Независимое и параллельное возбуждение
Если обмотка якоря электродвигателя и обмотка возбуждения подключены к различным источникам питания, данный двигатель называют двигателем с независимым возбуждением. Механические и электромеханические характеристики такого двигателя аналогичны характеристикам двигателя с параллельным возбуждением (рис. 1), так как у него ток возбуждения Iв также не зависит от тока якоря Iя .
Из графиков, представленных на рис. 1, б и 1, в видно, что такие электродвигатели характеризуются малой зависимостью частоты вращения якоря от развиваемого вращающего момента, тогда как для стартерного электродвигателя предпочтительнее обратно пропорциональная зависимость между частотой вращения и развиваемым моментом в определенном интервале частот, характерных для режима пуска ДВС.
Последовательное возбуждение
В электродвигателях с последовательным возбуждением обмотка возбуждения подключается последовательно с обмоткой якоря, и поэтому ток в этих обмотках одинаковой величины: Iя = Iв (рис. 2). Следовательно, магнитный поток Ф двигателя является некоторой функцией тока якоря Iя .
Характер этой функции изменяется в зависимости от нагрузки двигателя. При токе якоря Iя меньше 0,8…0,9 номинального тока якоря ( Iном ), когда магнитная система машины насыщена, можно считать, что поток линейно зависит от тока якоря Iя :
где kф – коэффициент пропорциональности, имеющий размерность индуктивности, остается практически постоянным в значительном диапазоне нагрузок.
При дальнейшем возрастании тока якоря поток Ф растет медленнее, чем ток якоря, и при больших нагрузках можно считать величину потока Ф постоянной. В этом случае скоростная и моментальная характеристики становятся линейными аналогично характеристикам двигателя с независимым возбуждением.
Механическая характеристика двигателя с последовательным возбуждением является «мягкой» (рис. 2). При малых нагрузках частота вращения вала n резко возрастает и может превысить максимально допустимое значение (двигатель идет вразнос). Несмотря на этот недостаток, такие двигатели находят широкое применение в различных электрических приводах, где имеют место изменение нагрузочного момента в широких пределах и тяжелые условия пуска. В частности, большинство стартерных электродвигателей имеют последовательное возбуждение.
Объясняется это тем, что «мягкая» характеристика рассматриваемого двигателя более благоприятна для указанных условий работы, чем «жесткая» характеристика двигателя с параллельным возбуждением. При «жесткой» характеристике частота вращения n почти не зависит от момента (рис.1, в).
При «мягкой» характеристике двигателя с последовательным возбуждением частота вращения n обратно пропорциональна М , вследствие чего мощность электродвигателя рассчитывается по формуле:
где С4 – постоянная.
Поэтому при изменении нагрузочного момента в широких пределах, что характерно для пуска ДВС, мощность Рс , а следовательно, и электрическая мощность Рэ = IяUя , и ток Iя у двигателей с последовательным возбуждением изменяются в меньших пределах, чем у двигателей с параллельным возбуждением. Кроме того, они лучше переносят перегрузки.
В электродвигателе со смешанным возбуждением (рис. 3) магнитный поток Ф создается в результате совместного действия двух обмоток возбуждения (рис. 3, а): параллельной (ОВ1) и последовательной (ОВ2). Поэтому его механическая характеристика (рис. 3, в; кривые 3, 4) располагается между характеристиками двигателей с параллельным (прямая 1) и последовательным (кривая 2) возбуждением.
Одним из достоинств двигателя со смешанным возбуждением, которые используются в некоторых конструкциях стартеров, является то, что он, обладая «мягкой» механической характеристикой, может работать на холостом ходу, так как частота вращения холостого хода имеет конечное значение.
Таким образом, в стартерах используются двигатели постоянного тока с последовательным и (в отдельных случаях) со смешанным возбуждением.
На рис. 4 представлены схемы внутренних соединений некоторых стартеров отечественного производства.
Возбуждение от постоянных магнитов
В последние годы на стартерах стали применять электродвигатели с возбуждением от постоянных магнитов, которые имеют пониженное энергопотребление вследствие отсутствия тока возбуждения. Однако такие стартеры имеют недостатки, характерные для электродвигателей с независимым (параллельным) возбуждением.
Кроме того, материал для изготовления постоянных магнитов пока еще очень дорогой, поэтому постоянные магниты вместо обмотки возбуждения в настоящее время используются только для небольших стартеров легковых автомобилей.
Использование в стартерных электродвигателях постоянных магнитов для возбуждения потока дает снижение нагрузки на аккумуляторную батарею при пуске ДВС в связи с тем, что такой электродвигатель имеет малый момент и потребляет малые токи.
Повышается возможность пуска двигателя при низких температурах, снижается выходная мощность при малых нагрузках. Кроме того, такие стартера имеют меньшие габариты, по сравнению со стартерами, имеющими обмотку возбуждения.
Однако высокая частота вращения, характерная для таких двигателей в любом нагрузочном режиме, а также относительно небольшой развиваемый вращающий момент повлекли применение на таких стартерах дополнительной механической передачи, уменьшающей частоту вращения якоря и увеличивающего вращающий момент, передаваемый коленчатому валу ДВС. Обычно в качестве дополнительной механической передачи используется планетарный зубчатый редуктор, конструкция которого отличается компактностью.
К недостаткам, присущим стартерам с возбуждением от постоянных магнитов можно добавить тяжелые условия работы муфты свободного хода и щеточно-коллекторного узла электродвигателя, повышенный шум из-за высокой частоты вращения и наличия редуктора. Применение стартеров с редукторами потребовало изменить технологию их изготовления. В частности, для увеличения механической прочности вращающихся частей стали применять более прочную изоляцию обмоток якоря, пайка соединений в главных цепях заменена сваркой, производится точная балансировка вращающихся частей и т. п.
Виды, устройство и принцип работы стартера автомобиля
Для успешного запуска двигателя внутреннего сгорания необходимо устройство, которое придаст кривошипно-шатунному механизму начальный импульс, то есть провернет маховик до нужных оборотов. Таким устройством является стартер и именно он отвечает за пуск двигателя. В статье подробно рассмотрим устройство и принцип работы стартера автомобиля, а также его возможные неисправности.
Устройство стартера
Стартер автомобиля представляет собой электродвигатель. Он преобразует электрическую энергию от аккумулятора в механическую работу, которая приводит в движение маховик и коленчатый вал, для начала процесса движения поршней. Стартером оборудованы все двигатели.
Стартер автомобиля
Принцип работы устройства основан на законах физики, которые известны со школьной скамьи. Если между двумя полюсами магнита поместить проволочную рамку с двумя концами, а потом пустить через нее ток, то она начнет вращаться. Это и есть самый простой электродвигатель.
Простой автомобильный стартер представляет собой металлический корпус, в котором находятся четыре магнитных сердечника (башмаки). Эти магниты в корпусе и представляют собой статор электродвигателя. Раньше на башмаках наматывалась обмотка возбуждения, на которую подавался электрический ток от аккумулятора. То есть это был классический электромагнит. На современных же устройствах применяются обычные магниты.
Другой важной деталью устройства является якорь. Он представляет собой вал с напрессованным сердечником из электротехнической стали. В пазах сердечника находятся те самые рамки, которые будут вращаться вокруг полюсов магнита. Концы рамок соединены с коллектором, к которому подходят четыре щетки – две положительные от АКБ и две отрицательные, которые будут идти к массе.
В закрывающей задней крышке находятся щеткодержатели с пружинками, которые постоянно поддавливают щетки к коллектору для обеспечения контакта. Также в задней крышке установлена опорная втулка якоря или подшипник.
Устройство обычного стартера
На металлическом корпусе находится входной контакт. К этому контакту подключается плюсовая клемма аккумулятора (+). Ток проходит по рамкам якоря и выходит на отрицательные щетки массы. Масса соединяется с отрицательной клеммой аккумулятора. Таким образом, создается магнитное поле вокруг рамок якоря и он вращается.
Плюсовой провод АКБ, который подходит к стартеру, значительно толще остальных. По этому проводу подается пусковой ток, равный примерно 400А.
Ток от аккумулятора на стартер не может подаваться постоянно. Он нужен только в момент запуска двигателя. Поэтому между плюсовым проводом аккумулятора и контактом стартера есть так называемый медный пятак, который замыкает контакты.
На валу якоря также выполнено шлицевое соединение, на котором находится направляющая втулка и бендикс с шестерней с возможностью осевого перемещения. Это движение обеспечивает контакт шестерни непосредственно с зубчатым венцом маховика. Простыми словами можно сказать, что бендикс подходит к маховику, проворачивает его, сколько это необходимо, а потом отходит обратно.
Стартер в разрезе
Но бендикс не перемещается по валу самостоятельно. Это делает другой электромагнит меньшего размера – втягивающее реле. От реле к шестерне подходит вилка, которая и толкает бендикс. К катушке втягивающего подается управляющий ток от аккумулятора через замок зажигания. При включении зажигания катушка намагничивается и втягивает сердечник. Этот сердечник, с одной стороны, связан с вилкой бендикса, с другой – с пятаками, замыкающими контакты электродвигателя. Когда напряжение с катушки втягивающего реле снимается, то вилка вновь втягивается обратно на место, а электродвигатель прекращает свою работу.
Якорь начинает вращение только тогда, когда шестерня уже вошла в зацепление с маховиком.
Основные компоненты
Таким образом, основными составляющими стартера можно назвать:
- магнитный статор;
- вал с якорем;
- втягивающее реле с компонентами (электромагнит, сердечник, контакты);
- щеткодержатель с щетками;
- бендикс с шестерней;
- вилка;
- элементы корпуса.
Принцип работы
Учитывая устройство стартера, рассмотрим его работу пошагово:
- Водитель включает зажигание и на втягивающее реле подается управляющее напряжение. Катушка реле намагничивается и перемещает сердечник.
- Сердечник подводит бендикс и шестерню к маховику при помощи вилки и в конце своего хода замыкает контактные пятаки на электродвигатель.
- Пусковой ток подается на обмотку якоря, который начинает вращаться в магнитном поле статора. Стартер начал работать.
- Двигатель запустился, водитель повернул ключ из положения пуска. Управляющий ток перестал подаваться на втягивающее реле, пятаки разомкнулись, а бендикс с шестерней вернулся в исходное положение под действием возвратной пружины. Стартер прекратил свою работу.
Устройство бендикса
Бендикс представляет собой довольно интересное устройство. Иногда его называют муфтой свободного хода или обгонной муфтой.
Для запуска двигателя нужно, чтобы маховик вращался не медленнее, чем 100 об/мин. Так как шестерня стартера намного меньше зубчатого венца маховика, ей нужно вращаться в 10 раз быстрее, чтобы придать маховику необходимое ускорение. Это 1000 об/мин.
Когда двигатель заводится, маховик начинает вращаться очень быстро. Он передает это быстрое вращение на шестерню. Нетрудно посчитать, что скорость вращения шестерни при этом будет уже 10 000 об/мин. Если на вал стартера передалось такое ускорение, то он бы не выдержал. Именно для этого и нужен бендикс. Он передает вращение от шестерни на маховик, но не передает его обратно от маховика на шестерню.
Бендикс в разборе
Сам бендикс состоит из двух частей: шестерни и корпуса. Внутренняя обойма шестерни входит в корпус с внешней обоймой. Внутри этой обоймы находятся четыре ролика с пружинками. Корпус бендикса вращается через вал стартера. При вращении внутренняя обойма шестерни как бы заклинивает в корпусе и вращается, а при вращении шестерни от маховика эти ролики расходятся и не передают вращение на вал. Сам вал стартера при этом вращается с прежней скоростью.
Виды стартеров
Как было описано выше в современных стартерах применяются не башмаки с обмоткой возбуждения, а магниты. Магниты в качестве статора позволяют значительно уменьшить габариты устройства. При этом частота вращения якоря повышается. Поэтому иногда применяется редуктор.
Исходя из этого, стартеры делятся на:
- редукторные;
- простые (безредукторные).
С устройством и работой простого стартера мы уже познакомились. Работа редукторного основана на тех же принципах, что и простого, но имеет немного другое устройство. Крутящий момент от якоря вначале поступает в планетарный редуктор, который его преобразует, и далее на вал бендикса. Вращение от якоря на шестерню передается через водило планетарного механизма.
Этот вид стартера имеет следующие преимущества:
- более высокий КПД;
- меньшее потребления тока;
- небольшие размеры;
- запуск двигателя даже при низком заряде аккумулятора.
Но такая конструкция сказывается на сложности ремонта.
Основные неисправности
Все возможные виды неисправностей стартера можно разделить на механические и электрические.
С механическими узлами может быть связано:
- Залипание контактных пятаков.
- Износ подшипников и удерживающих втулок.
- Износ роликов бендикса.
- Заклинивание вилки или сердечника втягивающего реле.
Проблемы с электрикой:
- Выработка щеток и пластин коллектора.
- Обрыв цепи в обмотке башмаков (статора) или втягивающего реле.
- Замыкание и перегорание обмоток.
Щетки и втягивающее реле не ремонтируются. Эти детали меняются на новые. Ремонт обмотки лучше доверить квалифицированному автоэлектрику.
Стартер – это довольно сложный механизм, который требует внимания от водителя. Любые шумы и скрежет лучше оперативно устранять. Но несмотря на общую сложностью устройства, принцип его работы очень простой. Поняв его, можно самостоятельно устранить многие неисправности.