Схема обмотки машин постоянного тока

Схема обмотки машин постоянного тока

V. СХЕМЫ ОБМОТОК МАШИН ПОСТОЯННОГО ТОКА

38. ЯКОРНЫЕ ОБМОТКИ (ОСНОВНЫЕ СВЕДЕНИЯ)*

Обмотка якоря состоит из секций. Секция представляет собой наименьшую часть обмотки, заключенную между двумя присоединениями к коллектору. Секция может состоять из одного, двух или нескольких витков. Активные стороны одной секции располагаются под разными полюсами на расстоянии, обычно равном или несколько меньшем полюсного деления.

Полюсное деление — часть окружности якоря, приходящаяся на один полюс. Величина полюсного деления (см)

где D — диаметр якоря, см; 2 р — число полюсов.

В зависимости от формы секций различают волновые, петлевые и комбинированные (лягушечьи) обмотки. Волновые и петлевые обмотки в зависимости от шага по коллектору могут быть простыми и сложными. Сложные обмотки называют также многоходовыми.

Волновые в петлевые якорные обмотки обычно выполняют двухслойными **, присоединяя к каждой коллекторной пластине выводы двух секций. Следовательно, число секций обмотки S равно числу коллекторных пластин К. В пазу якоря может быть расположено две, четыре, шесть и более сторон секций. Каждая пара расположенных друг над другом сторон образует элементарный паз, число которых в реальном пазу обозначается ип. Число элементарных пазов якоря равно произведению числа пазов z на ип и равно числу секций, т. е. zэ=zип=S=K***.

Лягушечья обмотка укладывается в пазах якоря в четыре слоя, причем волновая обмотка охватывает петлевую (одна сторона секции волновой обмотки располагается у клина, вторая — на дне паза).

В зависимости от взаимного расположения выводов секций различают также неперекрещенные и перекрещенные обмотки (рис. 89, 90).

Катушкой якорной обмотки называют группу секций, образующих элемент обмотки до укладки в пазы. Катушка состоит из одной или нескольких секций, обычно имеющих общую корпусную изоляцию. Число секций в каждой стороне катушки равно числу элементарных пазов в реальном пазу якоря. Часть катушки, расположенную вне пазов, называют лобовой частью. Различают лобовую часть со стороны коллектора и с противоположной стороны.

При большом сечении шин катушки для облегчения укладки выполняют из двух частей (полукатушек). Секция в этом случае имеет обычно один виток и состоит из двух полусекций (стержней). Такая обмотка называется стержневой. Переход из верхнего слоя в нижний осуществляется при помощи хомутиков, надеваемых на концы стержней и припаиваемых к ним.

* Схемы разметки якоря см.: Виноградов Н. В. Обмотчик электрических машин. — М: Высшая школа, 1977.

** В очень редких случаях для низковольтных машин на большие токи применяют однослойные обмотки.

*** Исключение из этого правила составляет обмотка с «мертвой> секцией.

Рис. 89. Простая петлевая обмотка: а — неперекрещенная (правая), б — перекрещенная (левая)

Рис. 90. Простая волновая обмотка: а — неперекрещенная (левая), б — перекрещенная (правая)

Таблица 59. Шаги, числа параллельных ветвей и условия симметрии петлевых и волновых обмоток

Примечание. y1 — первый шаг — расстояние между сторонами одной и той же секции (ширина секции). Обычно выполняются обмотки с первым шагом y1≤τ; y2 — второй шаг — расстояние между второй стороной данной секции и первой стороной следующей за ней по схеме секции; у — результирующий шаг — расстояние между верхними или нижними сторонами двух следующих друг за другом по схеме секций; ук — шаг по коллектору — расстояние между началом и концом секции, измеренное числом коллекторных делений; — число параллельных ветвей; m — коэффициент кратности, равный числу простых обмоток, составляющих сложную; | — наименьшее дробное число, которое надо вычесть или прибавить, чтобы частное от деления числа элементарных пазов на число полюсов равнялось целому числу.

Шаги обмотки y1, y2 и у обычно выражают числом секций или элементарных пазов (табл. 59). Шаг по коллектору измеряют числом коллекторных пластин, а шаг по пазам yz — числом пазов. Полюсное деление т также может быть выражено числом элементарных пазов:

Якорные обмотки должны удовлетворять требованиям симметрии, поэтому соотношения между ип, z, а и К должны иметь определенные значения (см. табл. 59). В сложной волновой обмотке выбор ип и z еще более ограничен (табл. 60).

Значения ип при числе пар полюсов

Устройство обмотки якоря

Обмотка машины постоянного тока состоит из одинаковых частей, называемых секциями. На рис. 8-8 представлена одна секция, состоящая из одного витка (ɯ = 1), вторая — из двух витков (ɯ = 2) , Число витков в секции может быть и большим. Начало и конец каждой секции припаиваются к петушкам двух коллекторных пластин, находящихся рядом или на некотором расстоянии друг от друга. Так как конец каждой секции и начало следующей за ней секции припаиваются к одной коллекторной пластине, то образуется замкнутая обмотка.

Боковые части секции (рис 8-8) лежат в пазах. При вращении в них наводится э. д. с, почему они и называются активными сторонами секции. Остальные части секций лежат на торцах якоря, вне пазов. Они называются лобовыми частями и в них э. д. с. не наводится.

Активные стороны лежат в пазах в два слоя: нечетные сверху, а четные снизу, у дна паза. Цифры на рис. 8-8 обозначают номер паза, а буквы, стоящие рядом, — слой: верхний (в) и нижний (н). Упрощенная схема обмотки якоря, составленная из секций, показана на рис. 8-9. Число витков в секции принято равным единице.

Рис. 8-8. Секция обмотки якоря.

Активные стороны, лежащие в пазах, идущие от зрителя за плоскость рисунка, изображены кружками, а лобовые части — сплошными линиями на лицевой стороне торца якоря и пунктиром на торце за плоскостью рисунка. Таким образом, из коллекторной пластины № 1 провод идет в верхний слой паза 7, затем по невидимому торцу (пунктир) в нижний слой паза 4 и из него в коллекторную пластину № 2. Из коллекторной пластины № 2 провод идет в верхний слой паза 2 и т. д. После полного обхода якоря обмотка замыкается на себя у коллекторной пластины № 1.

Если обмотка якоря вращается по направлению, указанному на рис: 8-9, то в активных частях ее проводов появятся э. д. с, направление которых определено правилом правой руки. В каждой секции наводится э. д. с. е = Ем sin ωt (рис. 5-2) и естественно, что сумма их всех в замкнутой на себя обмотке равна нулю. Однако при обходе всей обмотки можно заметить, что в одной части проводов э. д. с, имеют одно направление, в другой части — противоположное. Это указывает на наличие двух параллельных ветвей обмотки.

Рис. 8-9. Схема обмотки якоря.

На рис. 8-10 показано, как образуются параллельные ветви между коллекторными пластинами 1 и 4. Как и ранее, цифры на рисунке обозначают номер паза, а буквы рядом слой — верхний (в) или нижний (н). Оказывается, что коллекторная пластина 4 является точкой высшего, а коллекторная пластина 1 — низшего потенциала. На эти места и ставятся щетки. На рис. 8-9 щетки показаны условно расположенными внутри коллектора, в действительности же они всегда расположены на его наружной поверхности.

В момент времени, соответствующий положению якоря, показанного на рис. 8-9, между щетками будет действовать разность потенциалов, равная напряжению машины

Рис. 8-10. Упрощенное изображение схемы рис. 8-9

Можно заметить, что при повороте якоря на угол 60° величина напряжения U и поляр ность щеток сохраняется прежними, так как шестой паз займет место первого, первый — второго и т. д. На схеме на рис. 8-10 секция () из верхней параллельной ветви переключится в нижнюю, а равноценная ей секция () переключится из нижней ветви в верхнюю. Такое же положение будет и при повороте на любой угол, кратный 60°.

Однако при повороте якоря на угол, меньший чем 60°, положение будет несколько иное.

На рис 8-11 показано положение якоря при повороте на угол 30°, Лобовые части для простоты показаны только для секций () и (3н 6в). В этом положении указанные секции замкнуты щетками накоротко и, следовательно, исключены из параллельных ветвей обмотки якоря. Напряжение машины теперь определяется суммой э. д. с

а сами e1 и е2 будут иметь другие мгновенные значения, чем при первом положении якоря. Очевидно, напряжение будет меньше, чем при положении якоря, представленном на рис. 8-10. При вращении машины ее напряжение будет непрерывно колебаться в некоторых пределах

Рис 8-11. Расположение обмотки при повороте якоря на 30° (сравнить рис. 8-9).

Чем больше секций включено в параллельную ветвь, тем меньше величина пульсаций напряжения U. В современных машинах пульсации настолько малы, что напряжение считают постоянным.

Геометрической нейтралью машины называется плоскость, проходящая через ось вала машины и делящая расстояние между полюсами пополам. Электродвижущая сила, наводимая в секции обмотки, проходящей через геометрическую нейтраль, равна нулю или очень мала. В этот момент времени и происходит замыкание секции щеткой накоротко. О процессах, происходящих при переключении секций из одной параллельной ветви в другую.

Статья на тему Устройство обмотки якоря

ОСОБЕННОСТИ СХЕМ ОБМОТОК ЯКОРЕЙ МАШИН ПОСТОЯННОГО ТОКА

Обмотки якоря подразделяют по направлению отгиба лобовых частей на волновые и петлевые и в зависимости от схем соединений на простые и сложные. Соотношения размеров и схемы обмоток ха­рактеризуются двумя частичными и результирующими шагами, ша­гом по коллектору и шагом по пазам якоря (рис. 3.49). Частичные шаги

Рис. 3.49. Обозначение шагов пет­левой обмотки якоря: а) ук= + 1; 6) ук = — 1 (первый — у1, второй — у2) и результирующий шаг у измеряются в так называемых элементарных па­зах, не имеющих эквивалента в ли­нейных размерах. Под элементар­ным понимают условный паз, в ко­тором как бы расположено по од­ной секционной стороне обмотки в каждом слое. Отсюда число элемен­тарных пазов Zэ, число секций во всей обмотке якоря S, число плас­тин коллектора К и число пазов якоря Z связаны следующим соот­ношением: Zэ = S = К = Z uп,

где uп — число секций в катушке якоря.

Шаг обмотки по коллектору ук определяет расстояние между началом и концом секции по окружности коллектора в коллек­торных делениях tк = (πDк)/ K, где Dк — наружный диаметр кол­лектора.

Шаг обмотки по пазам (yz) определяет расстояние между сторо­нами катушки или секции в зубцовых делениях якоря tz = (πDa)/ Z, где Da — наружный диаметр якоря [6].

Схемы обмоток якорей машин постоянного тока изображают на чертежах так же, как и машин переменного тока, т. е. в виде торце­вых (вид со стороны коллектора) или развернутых схем. Наиболь­шее распространение получили развернутые схемы. Их изображение имеет ряд особенностей, связанных с тем, что каждая катушка об­мотки якоря состоит из нескольких секций и имеет столько пар вы­водных концов, сколько секций содержится в ней. Выводные концы секций соединены с пластинами коллектора. Поэтому на схеме об­мотки якоря нужно либо каждую секцию изображать отдельным многоугольником, либо показывать пазовые части катушки одной линией, а лобовые части каждой секции — отрезками, соединенны­ми с концами пазовой части и с пластинами коллектора. Последний способ изображения встречается чаще.

Рис. 3.50. Схема простой петлевой обмотки якоря, Z = 14, uп = 3, К = 42

На рис. 3.50 приведена развернутая схема простой петлевой об­мотки, каждая катушка которой состоит из трех секций. Пазовые части катушек изображены в зависимости от их положения в пазу сплошными или пунктирными линиями, а в лобовых частях эти ли­нии разветвляются: от каждой отходят три отрезка, обозначающих лобовые части трех секций, входящих в катушку. Начала и концы секций соединяют с пластинами коллектора. На схемах на коллек­торных пластинах обычно показывают места расположения щеток.

Схемы обмоток якорей, как правило, состоят из ряда повторяю­щихся одинаковых элементов, поэтому полное представление об об­мотке могут дать и сокращенные, так называемые практические схе­мы. В практических схемах вычерчивают секции только одной из катушек: показывают расположение обеих сторон секции в элемен­тарных и действительных пазах и их соединение с пластинами кол­лектора. Пластины нумеруют так, чтобы их номера совпадали с но­мерами элементарных пазов, в которых располагают стороны секций, соединенных с данными пластинами. На рис. 3.51 показана практическая схема обмотки, развернутая схема которой приведена на рис. 3.50.

В большинстве обмоток первый частичный шаг секции у1 выби­рают кратным числу секций в слое паза uп. В этом случае шаги по пазам катушек и всех секций обмотки одинаковые (yz = y1 /uп) и об­мотку называют равносекционной (рис. 3.52, а). Если же у1 /uп не равно целому числу, то у секций будут разные шаги по пазам якоря

Рис. 3.51. Практическая схема пет­левой обмотки, уz = 3, uп = 3, у1 = 9 (рис. 3.52, б). Такую обмотку нельзя выполнить из целых катушек. Она называется ступенчатой, выполняет­ся только в стержневых обмотках и редко встречается в практике. Для того чтобы легче понять особенности различных схем обмо­ток якоря, все последующие схемы в учебнике построены для обмоток с uп = 1, при этом Z = Zэ = К. Следует отметить, что обмотку якоря с uп = 1 выполняют крайне редко, так как в этом случае необоснованно увели­чивается число пазов и ухудшается их заполнение проводниками, пото­му что толщина корпусной изоля­ции катушки, состоящей из одной или из нескольких секций, остается одинаковой.

Рис. 3.52. Равносекционная и ступенчатая обмотки:

uп=2, у1/ уп — не равно целому числу (обмотка ступенчатая)

ПРОСТЫЕ ПЕТЛЕВЫЕ ОБМОТКИ

В простых петлевых обмотках якоря (см. рис. 3.50) результирую­щий шаг равен шагу по коллектору:

Большее распространение получили обмотки с у = 1, так как при у = 1 лобовые части секций несколько удлиняются и в них возникает дополнительное перекрещивание выводных концов (см. рис. 3.49, б). Первый частичный шаг петлевой обмотки выбирают близким к полюсному делению:

где e — наименьшее число (или дробь), при котором у1 выражен це­лым числом, кратным числу uп. Значение е характеризует укорочение (удлинение) шага по сравнению с полюсным делением. Обмотки с укороченным шагом применяются чаще.

Рассмотрим более подробно особенности простых петлевых об­моток на примере схемы, приведенной на рис. 3.50.

На практической схеме этой обмотки (см. рис. 3.51) показано что y1 = Zэ / 2p ±е = 42/ 4 – 1,5 = 9; у2 = y1 – у = 9 – 1 = 8. Шаги по пазам всех секций одинаковы: yz = у1 / uп = 9/3 =3. Обмотка равносекционная. Если же выполнить первый частичный шаг у1 = 42/4 – 0,5 = 10 (у2 = 10 – 1 = 9), то у1/uп = 10/3 становится не равным целому числу. Шаги секций по пазам будут разные (рис. 3.52) и обмотка получится ступенчатой.

При простой петлевой обмотке щетки на коллекторе должны быть расположены обязательно через каждое полюсное деление. Замыкая пластины коллектора, они образуют в обмотке 2р па­раллельных ветвей (рис. 3.53). Поэтому в простой петлевой об­мотке число параллельных ветвей всегда равно числу полюсов машины: 2а = 2р.

Параллельные ветви в петлевой обмотке содержат несколько после­довательно соединенных между со­бой секций, в каждой из которых во время работы машины наводится ЭДС. При сборке машины из-за до­пусков при штамповке и шихтовке сердечника неравномерности воз­душного зазора под разными полю­сами и ряда других причин всегда Рис. 3.53. Параллельные ветви про­стой петлевой обмотки

существует некоторая асимметрия магнитной цепи. Поэтому ЭДС, наводимые в секциях в разных параллельных ветвях, немного отли­чаются друг от друга. Сопротивления параллельных ветвей практи­чески всегда различаются между собой из-за различного качества паек мест соединений секций и пластин коллектора. По этим причи­нам токи в параллельных ветвях петлевой обмотки якоря никогда не бывают абсолютно одинаковые, так как в ветвях обмотки цирку­лируют уравнительные токи. Они замыкаются через скользящие контакты между щетками и поверхностью коллектора и перегружа­ют их, при этом коммутация машин ухудшается, появляется искре­ние под щетками, пластины подгорают и коллектор быстрее выхо­дит из строя.

Чтобы разгрузить щеточные контакты от уравнительных токов, в якорях с петлевой обмоткой устанавливают уравнительные соединения первого рода. Уравнительные сое-

Рис. 3.54. Расположение уравнительных соединений первого рода:

а, б — со стороны, противоположной коллектору; в — со стороны коллектора; 1 — сердечник якоря; 2 — лобовые части обмотки; 3 — уравнительные соединения; 4 — задний нажимной ко­нус коллектора; 5 — коллектор

динения — это изолирован­ные проводники, которые соединяют точки обмотки, имеющие тео­ретически одинаковые потенциалы. Уравнительные соединения не уменьшают уравнительные токи, а лишь направляют их по безвред­ному для работы машины пути, обеспечивая нормальную работу щеточного контакта без перегрузки, создаваемой уравнительными токами.

В простой петлевой обмотке одинаковые потенциалы должны быть у всех секций, расположенных на расстоянии двойного по­люсного деления друг от друга. Поэтому шаг уравнительных сое­динений уур = К/р. Наиболее удобные места для подсоединения уравнителей к секциям — это коллекторные пластины или голов­ки лобовых частей секций со стороны, противоположной коллек­тору (рис. 3.54).

На схеме рис. 3.50 условно показаны только два уравнительных соединения, выполненных с шагом, равным уур = К/р = 42/2 = 21 эле­ментарных пазов.

Уравнительные соединения первого рода выполняют проводни­ками с площадью поперечного сечения, равной 20. 30 % сечения эф­фективного проводника обмотки. В машинах общего назначения чаще всего устанавливают по два-три уравнительных соединения на каждую пару параллельных ветвей или по одному уравнительному соединению на паз якоря, т. е. в 3 — 4 раза меньше, чем секций в об­мотке.

При установке уравнительных соединений (рис. 3.54) усложня­ется технологический процесс изготовления якоря и увеличивает­ся расход меди, поэтому петлевые обмотки применяют лишь в машинах, в которых не могут быть выполнены простые волновые обмотки [6].

ПРОСТЫЕ ВОЛНОВЫЕ ОБМОТКИ

Схема простой волновой обмотки якоря приведена на рис. 3.55. Обозначения шагов обмотки показаны на рис. 3.56. Шаг простой волновой обмотки по коллектору равен результирующему шагу:

В этой формуле знак «—» предпочтительный, так как при знаке «+» в обмотке появляются дополнительные перекрещивания вывод­ных концов секций. Для первого частичного шага у1 = K/ 2p ± e со­храняется следующее условие: у1/ uп равно целому числу, иначе об­мотка будет ступенчатой. Второй частичный шаг у2 = у – у1

Секции волновой обмотки соединяют друг с другом последова­тельно с результирующим шагом, близким к двойному полюсному делению. Поэтому при установке щеток на коллектор обмотка сое­диняется в две параллельные ветви независимо от числа полюсов

Рис. 3.55. Схема простой волновой обмотки якоря, Z = 17, K = 51, 2p = 4

Рис. 3.56. Элементы схемы и обозначение шагов простой волновой обмотки:

а – с двухвитковыми секциями, б – с одновитковыми секциями

Рис. 3.57. Параллельные ветви в простой волновой обмотке: а) с 2р = 4, б) с 2р = 6 машины. В простых волновых обмотках всегда 2а = 1(рис. 3.57). Особенностью обмоток является также возможность работы машины при неполном числе щеточных болтов. Действительно, как видно из рисунка 3.57, уменьшение числа щеточных болтов не приводит к изменению направления токов в параллельных ветвях обмотки.

Это обстоятельство используют, например, в ряде тяго­вых двигателей постоянного тока, в которых размещение полного числа щеточных болтов, равного 2р, затруднено из-за недостатка места [8].

При 2а = 2в обмотке отсутствуют эквипотенциальные точки и установка уравнительных соединений не требуется. Поэтому волно­вые обмотки более технологичны и дешевы по сравнению с петле­выми. Простые волновые обмотки применяют в большинстве ма­шин, номинальный ток которых не превышает 500. 600 А, т. е. ток в каждой параллельной ветви волновой обмотки остается меньшим 250. 300 А.

Простые волновые обмотки могут быть выполнены симметрич­ными только при условии, что ук = (К ± 1)/ рравно целому числу. Это накладывает определенные ограничения на соотношение чисел Ки р. В частности, машины общего назначения мощностью до 200. 300 кВт выпускают в большинстве случаев в четырехполюсном исполнении, т. е. с р = 2.Следовательно, для обеспечения симметрии обмотки коллектор якоря должен содержать нечетное число плас­тин. Но так как К = Z uп, то нечетными должны быть также число пазов якоря Z и число секций в катушке uп. В ряде случаев эти усло­вия невыполнимы при заданных линейной нагрузке и уровнях маг­нитной индукции на участках магнитопровода. В таких якорях при (К ± 1)/ р, не равном целому числу, могут быть выполнены несим­метричные волновые обмотки: обмотка с мертвой секцией или ис­кусственно-замкнутая обмотка.

Обмотка с мертвой секцией применяется реже. Для ее выполне­ния коллектор машины берут с числом пластин, на одну меньшим, чем число секций в обмотке якоря, т. е. с нечетным числом пластин: К’ = Z uп 1. Тогда ук = (К’ ± 1)/ рравно целому числу. По рассчитан­ному ук находят частичные шаги у1и у2и строят волновую обмотку. Число секций в обмотке s = Z uп, т. е. на одну больше, чем пластин коллектора. В пазы укладывают все секции, но одну из них не соеди­няют с коллектором. Образуется «мертвая секция». Выводные кон­цы этой секции подрезают и изолируют; лобовые части закрепляют бандажом вместе со всей обмоткой.

Рис. 3.58. Схема волновой обмотки с мертвой секцией, Z = 18, uп = l, К = 17

На рис. 3.58 в качестве примера приведена схема простой волновой обмотки 2р = 4 с мертвой секцией, в которой для упрощения принято Z = 18, uп = 1. Для построения схемы взято К’ = 18 — 1 = 17; ук = (17 — 1)/2=8; у1 = 4. Мертвая секция, не соединенная с пласти­нами коллектора, выделена на схеме прерывистой жирной линией. Несимметрия схемы проявляется, например, в различных шагах у2 :шаги по пазам 5 – 9, 6 – 10, 7–11и т. д. не равны шагам 1 – 6, 2 – 7, 3 – 8и т. д.

Обмотки с мертвой секцией встречаются в машинах, коллекторы которых имеют большое (К >100) число коллекторных пластин, при этом возникающая несимметрия, практически незаметна.

Мертвую секцию можно было бы вообще не укладывать в пазы якоря, однако это нарушает последовательность укладки обмотки и требует заполнения оставшихся свободными частей пазов изоляционным материалом и дополнительных мер при балансировке якоря [6].

Читайте также:  Мазда 323 масло для двигателя
Оцените статью