Схема нейтрализации отработавших газов дизельного двигателя

Схема нейтрализации отработавших газов дизельного двигателя

Нейтрализация отработавших газов дизельных двигателей

При очистке отработавших газов дизелей особое внимание уделяется сокращению содержания двух компонентов:

· твердых частиц, которые возникают из-за неоднородного распределения смеси в камере сгорания;

· оксидов азота ( NO х ), которые образуются при высоких температурах сгорания топливовоздушной смеси в дизеле.

В последние годы, благодаря совершенствованию систем впрыска топлива дизельных двигателей, уровень эмиссии этих компонентов отработавших газов значительно снизился.

Чтобы быстрее достигнуть рабочей температуры, окислительный нейтрализатор 9 (рис. 1) должен располагаться в системе выпуска как можно ближе к двигателю. Он уменьшает уровень эмиссии углеводородов (СН), оксида углерода (СО) и летучих составляющих твердых частиц, превращая все это в воду (Н2О) и диоксид углерода (СО2).

Рисунок 1 – Система выпуска отработавших газов с окислительным нейтрализатором, фильтром твердых частиц и системой добавления присадок:

1 – блок управления добавлением жидкой каталитической присадки; 2 – блок управления работой двигателя; 3 – насос для добавления жидкой каталитической присадки; 4 – датчик уровня жидкой каталитической присадки; 5 – бак с жидкой каталитической присадкой; 6 – клапан дозирования жидкой каталитической присадки; 7 – топливный бак; 8 – двигатель; 9 — окислительный нейтрализатор; 10 – фильтр твердых частиц; 11 – датчик температуры; 12 — дифференциальный датчик давления; 13 – сажевый датчик

Окислительные нейтрализаторы уже выпускаются серийно. Особыми версиями (т. н. «трехкомпонентными») можно одновременно сократить уровни эмиссии оксидов азота ( NOx ), CH и СО, причем содержание NOx снижается на 5. 10%.

2.Фильтр твердых частиц

В фильтре 10 (рис. 1) собираются содержащиеся в ОГ твердые частицы. Падение давления за фильтром твердых частиц — это возможный индикатор его загрязнения сажей, и в этом случае фильтр нуждается в очистке и регенерации. Необходимая для дожигания этой сажи температура (свыше 600°С) при нормальных режимах работы дизеля не возникает. С помощью некоторых регулировок аппаратуры подачи топлива и воздуха, например, установкой позднего момента начала впрыскивания и дросселированием воздуха на впуске, можно повысить температуру ОГ.

К настоящему времени разработаны специальные фильтры из пористой керамики, которые уже применяются серийно на легковых автомобилях.

Добавлением в топливный бак каталитических присадок обеспечивается снижение температуры дожигания твердых частиц в фильтре на 100°С. Разумеется, противодавление ОГ будет постепенно увеличиваться во время работы дизеля, так как негорючие отложения (пепел каталитических присадок) задерживаются фильтром. Это повышает расход топлива и ограничивает срок службы фильтра.

Система регенерации фильтра

При наличии системы регенерации фильтр твердых частиц подсоединяется к окислительному нейтрализатору, который окисляет содержащийся в ОГ оксид азота NO в диоксид азота NO 2 . В этом случае собранная в фильтре сажа непрерывно сжигается при подаче сюда N О2 уже при температуре 250°С, что значительно ниже температуры сгорания твердых частиц в обычных фильтрах, где происходит сгорание с подачей обычного кислорода О2.

Датчики температуры, дифференциальный датчик давления и датчик сажи за фильтром твердых частиц контролируют функционирование системы регенерации фильтра. Для длительной работы окислительных нейтрализаторов, из-за их чувствительности к сере, требуется топливо с низким ее содержанием.

Окислительный нейтрализатор и фильтр твердых частиц могут быть интегрированы в один конструктивный элемент с каталитическим покрытием фильтра. Этот фильтр сокращенно именуется CSF ( Catalyzed Soot Filter , т. е. фильтр с каталитическим покрытием) или CDPF ( Catalyzed Diesel Particulate Filter , т. е. каталитический дизельный фильтр твердых частиц).

3.Накопительный нейтрализатор NOx

Дизель всегда работает с избытком воздуха (бедная смесь), поэтому трехкомпонентный нейтрализатор, применяемый на бензиновых двигателях со впрыском топлива во впускной трубопровод, не может использоваться для снижения количества оксидов азота ( NOx ). При избытке воздуха СО и СН реагируют с остаточным кислородом ОГ до образования СО2 и Н2О и, таким образом, не могут быть использованы для превращения NOx в азот ( N 2 ).Для снижения концентрации оксидов азота в ОГ дизелей легковых автомобилей разработан накопительный нейтрализатор NOx , который уменьшает содержание оксидов азота другим способом: собирает их, а затем конвертирует. Этот процесс протекает в два этапа:

Читайте также:  У двигателя масло выходит через сапун

· накопление NOx из ОГ при работе дизеля на бедной смеси ( a > 1; от 30 секунд до нескольких минут);

· выделение NOx и восстановление (конверсия) в ОГ при работе дизеля на богатой смеси ( a

Оксиды азота при избытке кислорода в ОГ превращаются с помощью металлических окислительных нейтрализаторов на поверхности накопительного нейтрализатора NOx в нитраты. При этом к накопительному нейтрализатору добавлен окислительный нейтрализатор 3 (рис. 2), который окисляет NО в N О2.

Рисунок 2 – Схема системы выпуска отработавших газов с накопительным нейтрализатором NOX :

1 – двигатель; 2 – система электрического подогрева отработавших газов; 3 – окислительный нейтрализатор; 4 – датчик температуры; 5 – широкополосный лямбда-зонд; 6 – накопительный нейтрализатор NOX ; 7 – датчик NOX или лямбда-зонд; 8 – блок управления работой двигателя

С возрастанием количества накопленных оксидов азота уменьшается способность нейтрализатора их связывать.

Имеются две возможности узнать, когда нейтрализатор нагружен так, что фазу накопления необходимо завершить:

· количество накопленных оксидов азота рассчитывается смоделированным процессом с учетом температуры нейтрализатора;

· датчик N О X за накопительным нейтрализатором измеряет концентрацию оксидов азота в ОГ.

Начиная с определенной степени загрузки, накопительный нейтрализатор NOx должен регенерироваться, т. е. накопленные оксиды азота должны снова высвобождаться и преобразовываться в азот и кислород. Для этого двигатель кратковременно переключается на режим работы с недостатком воздуха ( a = 0,95). При двухступенчатой регенерации (рис. 2) возникают диоксид углерода (СО2) и азот ( N 2 ).

Существуют два различных способа определить конец фазы восстановления:

· смоделированный процесс рассчитывает количество оставшихся на нейтрализаторе оксидов азота;

· лямбда-зонд 7 (рис. 2), установленный за нейтрализатором, измеряет концентрацию кислорода в ОГ, и изменение напряжения с состава ОГ с недостатком воздуха ( a a > 1) указывает на то, что процесс восстановления закончен (отсутствие СО).

Чтобы и при холодном пуске достичь значительного сокращения уровня содержания NOx , можно применить систему 2 электрического подогрева ОГ.

В процессе очистки ОГ по принципу SCR ( Selective Catalytic Reduction , т. е. селективное каталитическое восстановление) в ОГ очень точно добавляется восстановитель, например, раствор мочевины с концентрацией 32,5% по массе. В гидролизном нейтрализаторе из раствора мочевины добывается аммиак (рис. 3).

Рисунок 3 – Система выпуска отработавших газов с селективным каталитическим восстановлением:

1 – двигатель; 2 – датчик температуры; 3 – окислительный нейтрализатор; 4 – форсунка для впрыскивания восстановителя; 5 – датчик NOX ; 6 – гидролизный нейтрализатор; 7 — нейтрализатор SCR ; 8 – заграждающий нейтрализатор NH 3 ; 9 – датчик NH 3 ; 10 – блок управления работой двигателя; 11 – насос восстановителя; 12 – бак для восстановителя; 13 – датчик уровня восстановителя

Аммиак реагирует в нейтрализаторе SCR с NOx , в результате чего образуются азот и вода. Современные нейтрализаторы SCR могут исполнять функции гидролизного нейтрализатора так, что последний становится не нужен.

Окислительный нейтрализатор перед добавлением восстановителя увеличивает эффективность системы. Окислительный нейтрализатор (заграждающий нейтрализатор NH 3 ),установленный за нейтрализатором SCR , предотвращает возможный выброс NH 3 .

Благодаря высокой степени снижения NOx возможна регулировка двигателя, оптимальная по расходу топлива. Таким образом, с этой системой можно сэкономить до 10% топлива.

Для соблюдения будущих норм состава ОГ для многих дизельных автомобилей необходимо будет наличие систем очистки ОГ, которые делают возможным как фильтрацию твердых частиц, так и максимально эффективное снижение уровня эмиссии NOx . Такие системы называются четырехкомпонентными, поскольку наряду с NOx и твердыми частицами они снижают также содержание СН и СО.

Комбинация систем требует эффективного управления работой дизеля. К настоящему времени разработаны комбинации накопительного нейтрализатора NOx и фильтра твердых частиц, а также нейтрализатора SCR и фильтра твердых частиц.

Пример комбинированной системы

Сажа непрерывно окисляется фильтром с каталитическим покрытием ( CDPF ), установленная далее система SCR снижает уровень эмиссии NOx . Добавка восстановителя осуществляется в зависимости от режима и температуры или от концентрации NОх в ОГ перед нейтрализатором. За функционированием комплексной системы наблюдают газовые датчики ( NO х и/или NH 3 ) и датчики температуры.

Системы нейтрализации выхлопных газов машины

Статья о нейтрализации выхлопов на бензине и дизеле: состав выхлопных газов, системы нейтрализации. В конце статьи — видео о том, что делать с запахом выхлопа в салоне.

Читайте также:  Рама автомобиля ремонт замена

Содержание статьи:

  • Выхлопные газы
  • Решение для бензиновых двигателей
  • Решение для дизельных двигателей
  • Проблемы системы нейтрализации выхлопных газов
  • Видео о том, что делать с запахом выхлопа в салоне

Проблема загрязнения воздуха и окружающей среды не нова – первые серьезные изменения были отмечены еще в 70-х годах прошлого века. Однако сегодня, спустя почти полвека, ситуация значительно усугубилась: автомобильного транспорта стало значительно больше, вместе с ним возросла концентрация вредных веществ и соединений, попадающих в атмосферу мегаполиса и вызывающих у сограждан серьезные нарушения здоровья.

Борьба за чистоту воздуха привела к созданию так называемых нейтрализаторов для двигателей бензинового и дизельного типа. Сегодня такие системы часто интегрированы в бортовую электронику транспортного средства. Что это за системы и как они работают? Рассмотрим детально.

Выхлопные газы

Во время работы различные системы автомобиля (ДВС, топливная, вентиляционная, а также ходовая часть) выделяют вредные вещества в виде газа и мелкодисперсной пыли. Часть из них – неядовитые соединения, которые содержатся в обычном воздухе. Другая часть является ядовитыми, токсичными и канцерогенными веществами, которые не только негативно влияют на окружающую среду, но и разрушают здоровье человека. Основные загрязнители:

    СО (он же – оксид углерода, или угарный газ) не имеет цвета и запаха, однако приводит к патологии ЦНС, угнетению сердечно-сосудистой и дыхательной системы, и в концентрации 0,3% от объема воздуха приводит к летальному исходу. Возникает он в результате неполного сгорания топлива.

СН (углеводороды) – обширная группа соединений с общей структурой, которые возникают при неполном или недостаточно быстром сгорании топлива. К ним относятся парафин, олефин, альдегид, формальдегид, бензол, толуол, ксилол и прочие полициклические соединения. Эти мутагены и канцерогены разрушают органы дыхания и способствуют росту и развитию раковых клеток, в том числе рака крови – лейкемии.

NОх (окислы азота) – основная причина возникновения кислотных дождей, так как при соединении с водой образуются азотная и азотистая кислоты. Это один из серьезных канцерогенов, вызывающих раковые опухоли. Ядовитый газ разрушает органы дыхания и накапливается в крови. Образуется в момент сгорания топлива.

SОх (оксиды серы) аналогично предыдущему химическому элементу. При контакте с водой образуют серную и сернистую кислоты. В состоянии газа вызывает патологию органов зрения и дыхания.

Н2S (сероводород) — вызывает общее отравление организма, возникает при использовании низкокачественного топлива с высоким содержанием серы.

NH3 – аммиак – вызывает слепоту и ожоги верхних дыхательных путей.

Частицы сажи – продукт неполного сгорания топлива и масла. В основном, проблема возникновения канцерогена характерна для дизельных двигателей.

Мелкодисперсные частицы пыли углеводорода, серы, тяжелых металлов менее опасны, так как способны отфильтровываться непосредственно организмом.

Дым синего или белого цвета – продукт испарения масла дизельных двигателей.

СО2 – углекислый газ – вызывает угнетение ЦНС, сердечно-сосудистой системы и органов дыхания, при содержании в атмосфере 6% от общего объема воздуха приводит к летальному исходу.

  • Прочие, незначительные, но не менее опасные составляющие выхлопных газов: метан, закись азота, фторуглеводород, гексафторид серы.
  • В современном законодательстве проблема экологии и нормы предельно допустимых выхлопных газов для автотранспортных средств регулируются техрегламентом Таможенного союза ТР ТС 018/2011 в поправке от 11.07.2016. Однако с 11 ноября 2018 и в него будут внесены поправки, ну а пока допускаются следующие предельные показатели: СО — 85 г/кВт•ч, НС — 5 г/кВт•ч, NO — 17 г/кВт•ч.

    А к обязательным компонентам автомобилей относятся системы нейтрализации отработавших газов, в том числе сменные каталитические нейтрализаторы (за исключением систем нейтрализации на основе мочевины).

    Решение для бензиновых двигателей

    Системы нейтрализации выхлопных газов автомобиля бывают двухкомпонентными и трехкомпонентными, причем последние появились сравнительно недавно. Как устроена и работает данная система?

    Принцип действия

    Работа нейтрализатора заключается в окислении токсичных веществ при помощи катализаторов, в результате чего продукты неполного сгорания топлива дожигаются или разлагаются на безвредные химические элементы и вещества.

    Активными компонентами (катализаторами) выступают драгоценные металлы — палладий, платина. Популярны и менее затратны катализаторы на основе оксида меди, кобальта, никеля, ванадия, марганца, железа, алюминия. Нередки катализаторы на основе сплавов стали нержавеющей или легированной, бронзы или латуни.

    Читайте также:  Технология ремонт судовых двигателей

    Конструкция

    Основные элементы нейтрализатора – корпус из нержавеющей жаропрочной стали, внутренняя поверхность которой выстлана терморасширительной прокладкой. Внутри бака — газоподводящий и отводящий цилиндр и ячеистые соты, на которые нанесен слой вещества — катализатора.

      Ячеистые соты, на которые наносится катализирующий состав, могут быть выполнены из керамики. Такие нейтрализаторы в качестве катализатора используют тонкий слой из драгоценных редких металлов. Это самый дорогостоящий вид систем нейтрализации отработанных газов.

  • Менее дорогой вариант – ячеистые соты, выполненные методом пайки из тонкой металлической фольги с покрытием из одного из видов вышеназванных составов. Такая система более эффективна, ведь площадь ячеистых сот значительно больше, чем у керамических, а следовательно, способно обработать больший объем отработанных газов.
  • Устройство в автомобильных системах и порядок работы

    Системы нейтрализации выхлопных газов располагаются в непосредственной близости от ДВС, под днищем транспортного средства. Через шарнирное соединение нейтрализатор подсоединяется к выпускному коллектору с одной стороны, и выхлопной системе – с другой.

    Для обеспечения качественной химической реакции с участием кислорода системы нейтрализации используют воздушные насосы или виброклапаны. При разогреве системы нейтрализации до 400-800 градусов CO (оксид углерода) и CH (углеводороды) под действием катализаторов превращаются в углекислый газ и воду. Близкое расположение нейтрализаторов к ДВС позволяет снизить количество NОх (окисла азота) сразу после запуска двигателя.

    Обратную связь с блоком управления автомобиля нейтрализатору обеспечивают лямбда-зонды, специальные кислородные датчики, или четырехгазовые анализаторы, которые на входе и выходе из системы определяют уровень кислорода и качество очистки выхлопных газов.

    Решение для дизельных двигателей

    Аналогично бензиновым двигателям, дизели имеют системы нейтрализации выхлопных газов. Однако главной проблемой остается сажа: не до конца сгоревшее топливо под действием химических процессов превращается в твердые мелкодисперсные частицы — канцерогены.

    Нейтрализаторы решить эту проблему не способны. Поэтому перед тем, как выхлопной газ попадет в систему нейтрализации, он проходит очистку сажевым фильтром.

    Конструкция

    Аналогично нейтрализатору, фильтр имеет ячеистые соты, которые в шахматном порядке закрыты накопительными перегородками-фильтрами частиц. Для каждого производителя автомобиля с дизельным двигателем используется своя система контроля данного параметра. Среди видов таких фильтров можно выделить:

    • DPF – накопительные фильтры;
    • DPNR – фильтры, дожигающие твердые частицы;
    • FAP – фильтры с цериевыми присадками для очистки от сажи;
    • DPF или SCR – фильтры с присадкой AdBlue, разлагающие NOx (окислы азота) на безвредный азот и водяной пар.

    Проблемы системы нейтрализации выхлопных газов

    Все вышеописаные системы характерны для автомобилей импортного производства и моделей последнего поколения. Для отечественного автопрома с карбюраторами установка нейтрализатора не популярна, не пользуется спросом, а также может быть весьма накладна.

    Существенная стоимость систем нейтрализации выхлопных газов при их выходе из строя на импортных автомобилях чаще всего приводит к попытке избавиться от такой «нужной» детали. А выйти из строя он может по ряду причин:

    • Использование некачественного или «улучшенного» присадками топлива;
    • Попадание в рабочую полость топлива или масла;
    • Нестабильная работа двигателя;
    • Механические повреждения корпуса;
    • Резкий перепад температур на корпусе.

    Предугадать точный пробег нейтрализатора невозможно: на одних машинах он едва ли переваливает за 100 тыс. км, на других отлично ведет себя при пересечении отметки в 200 тысяч.

    Как решить проблему системы нейтрализации выхлопных газов? Не стоит спешить и демонтировать нейтрализаторы, ведь борьба за экологию только началась. Кроме того, что могут возникнуть непредвиденные поломки, которые не сможет диагностировать «обманутая» электроника, требования к выхлопам при прохождении ТО ужесточаются, а значит, не все владельцы смогут его пройти. Да и токсичные выхлопы и канцерогены смогут в большой концентрации попасть в салон и нанести непоправимый вред здоровью водителя и пассажиров.

    Гораздо целесообразнее проводить своевременную профилактическую проверку состояния нейтрализатора и сажевого фильтра и при возникновении критической для работы поломки или неисправности – заменить на новый. Ведь суммарная стоимость устранения возникших по причине отсутствия этого важного элемента неполадок может быть существенно выше.

    Видео о том, что делать с запахом выхлопа в салоне:

    Оцените статью