Схема многоскоростного асинхронного двигателя
24. СХЕМЫ ОБМОТОК МНОГОСКОРОСТНЫХ ТРЕХФАЗНЫХ АСИНХРОННЫХ ДВИГАТЕЛЕЙ
Многоскоростные трехфазные асинхронные двигатели обычно изготовляют на две, три и четыре частоты вращения.
Двухскоростные двигатели на кратные частоты вращения (число полюсов 2р=4/2; 8/4; 12/6) имеют на статоре одну двухслойную обмотку, которая может переключаться на два разных числа полюсов 4 и 2,8, и 4,12 и 6.
Двухскоростные двигатели на некратные частоты вращения (2р=6/4) имеют две отдельные обмотки, расположенные в одних и тех
Рис. 48. Развернутая схема двухскоростной двухслойной обмотки при 2р=4/2, z=24, а=1 и соединении фаз Δ/YY
Рис 49. Развернутая схема двухскоростной двухслойной обмотки при 2р=4/2, z=36, а=1 и соединении фаз Δ/YY
Рис. 50. Развернутая схема двухскоростной двухслойной обмотки при 2р=8/4, z=36, а=1 и соединении фаз Δ/YY
же пазах. В этом случае обмотки выполняют однослойными с концентрическими катушками. Катушечные группы обычно соединяют последовательно (число параллельных ветвей а=1), а фазы— в звезду, чтобы избежать замкнутых контуров при включенной в сеть второй обмотке.
Двигатели на три и четыре частоты вращения имеют также две отдельные обмотки. При трех частотах вращения одна обмотка переключается на два разных числа полюсов, а вторая имеет промежу-
Рис. 51. Торцовая схема двухскоростной двухслойной обмотки при 2р=8/4, а=1 и соединении фаз Δ/YY
точное число полюсов. У двигателей на четыре частоты вращения каждая из обмоток переключается на два числа полюсов.
На рис. 48—56 приведены наиболее распространенные схемы обмоток статоров многоскоростных двигателей.
При небольших размерах расточки статора и числе полюсов 2р=4/2 применяют такие двухслойные обмотки (рис. 48, 49), у которых часть катушек укладывается на дно паза, а часть — у клина (в верхнем слое обмотки). Например, у обмотки, схема которой представлена на рис. 48, катушки в пазы 1,2—7,8; 3,4—9,10 и 5,6—11,12 укладывают обеими сторонами на дно паза, а катушки в пазах 21,22—3,4; 23,24—5,6 и 19,20—1,2— обеими сторонами у клина. Это облегчает укладку обмотки, так как не приходится поднимать
верхние стороны первых катушек при закладке в пазы катушек последнего шага. Остальные катушки укладываются как в обычной двухслойной обмотке.
Двухслойная двухскоростная обмотка изготовляется в виде катушечных групп, укладка которых производится как в обычной двухслойной обмотке. Соединение выводов катушечных групп двухскоростной обмотки может быть также представлено в виде круговой схемы. На рис. 51 и 53 изображены торцовые схемы, соответствующие развернутым схемам, показанным на рис. 50 и 52.
Рис. 52. Развернутая схема двухскоростной двухслойной обмотки при 2р=8/4, z=36, a=2 и соединении фаз Δ/YY
Катушечные группы в двухслойных двухскоростных обмотках в каждой фазе разделяются на две части таким образом, чтобы при подключении на меньшее число полюсов ток в половине катушечных групп изменял направление. При большем числе полюсов направление тока во всех катушечных группах фазы одинаково. На рисунках направление тока в группах показано при подключении на большее число полюсов сплошной стрелкой, при подключении на меньшее число полюсов — пунктирной. Направление тока на схемах в первой и второй фазах принято от начала фазы к концу, в третьей фазе — от конца к началу.
Рассмотрим для примера схему, показанную на рис. 51. Из нее следует, что должны быть соединены между собой выводы катушечных групп: 2—13, 4—15, 10—21, 12—23, 18—5, 20—7. Начала фаз присоединяются к выводам: 8С1—1—24; 8С2—8—9; 8С3—16—17; 4С1 —14—19; 4С3—3—22; 4С2—6—11.
При включении схемы на большее число полюсов к сети присоединяются начала фаз 8С1, 8С2 и 8СЗ. При этом ток в катушечных группах каждой фазы направлен одинаково; в первой и второй фазах—от начала к концу (от нечетной цифры к четной), в третьей — от конца к началу. При включении на меньшее число полюсов ток в половине катушечных групп каждой фазы меняет направление на противоположное (группы: 1—2,3—4, 11—12, 13—14; 15—16; 23—24).
Рис. 53. Торцовая схема двухскоростной двухслойной обмотки при 2р=8/4, a=2 и соединении фаз Δ/YY
Рис. 54. Торцовая схема двухскоростной двухслойной обмотки при 2р=4/2, a=1 и соединении фаз Δ/YY
Рис. 55. Торцовая схема двухскоростной двухслойной обмотки при 2р=12/6, a=1 и соединении фаз Δ/YY
Рис. 56. Торцовая схема двухскоростной двухслойной обмотки при 2р=12/6, а=3 и соединении фаз Δ/YY
У многоскоростного двигателя одновременно к сети подключается одна из обмоток (рис. 57). Если эта обмотка с переключением чисел полюсов и включается на высшую скорость, то остальные выводы от нее при соединении фаз Δ/YY замыкаются накоротко (зажимы
Рис. 57. Схема включения электродвигателей на четыре скорости вращения
12С1, 12С2, 12С3 и 8С1, 8С2, 8С3 при включении соответственно на шесть и четыре полюса). Выводы второй обмотки остаются разомкнутыми.
Многоскоростные электродвигатели и их использование — назначение и особенности, определение мощности при разных скоростях вращения
Многоскоростные электродвигатели — асинхронные двигатели с несколькими ступенями частоты вращения, предназначены для привода механизмов, требующих ступенчатого регулирования частоты вращения.
Многоскоростные электродвигатели — электродвигатели специальной конструкции. Они имеют особую обмотку статора и нормальный короткозамкнутый ротор.
В зависимости от отношения полюсов, сложности схем и года выпуска многоскоростных электродвигателей, их статоры выполнены в четырех вариантах:
независимыми друг от друга односкоростнымн обмотками на две, три, даже четыре частоты вращения;
с одной или двумя полюсно-переключаемыми обмотками, в первом случае двухскоростными, а во втором — четырехскоростными;
с наличием трех частот вращения электродвигателя, одна обмотка изготовлена полюсно-переключаемой — двухскоростной, а вторая — односкоростиой, независимой — на любое число полюсов;
с одной полюсно-переключаемой обмоткой на три или четыре частоты вращения.
Электродвигатели с самостоятельными обмотками имеют плохое использование и заполнение пазов из-за наличия большого количества проводов и прокладок, что значительно снижает мощность по ступеням скоростей.
Наличие в статоре двух полюсно-переключаемых обмоток и особенно одной на три или четыре частоты вращения улучшает заполнение пазов и позволяет более рационально использовать сердечник статора, в результате чего повышаются мощности электродвигателя.
По сложности выполнения схем многоскоростные электродвигатели подразделяются на две части: с отношением полюсов равным 2/1 и — не равными 2/1. К первым относятся электродвигатели с частотой вращения — 1500/3000 об/мин или 2р = 4/2, 750/1500 об/мин или 2р = 8/4, 500/1000 об/мин или 2р = 12/6 и т. д. а ко вторым — 1000/1500 об/мин или 2р = 6/4, 750/1000 об/мин или 2р=8/6, 1000/3000 об/мин или 2р = 6/2, 750/3000 об/мин или 2р = 8/2, 600/3000 об/мин или 2р = 10/2, 375/1500 об/мин или 2р = 16/4 и т. д.
В зависимости от выбора схемы полюсно-переключаемой обмотки, при разном числе полюсов, электродвигатель может быть с постоянной мощностью или с постоянным моментом.
У электродвигателей с полюсно-переключаемой обмоткой и постоянной мощностью число витков в фазах при обеих числах полюсов будет одинаково или близко друг к другу, значит их токи и мощности будут одинаковы или близки. Вращающие моменты их будут разные, зависящие от числа оборотов.
У электродвигателей с постоянным моментом при меньшем числе полюсов катушечные группы, разделенные на две части в каждой фазе, включаются в двойной треугольник или двойную звезду параллельно, в результате чего число витков в фазе уменьшается, а сечение проводов, ток и мощность увеличиваются в два раза. При переключении с больших на меньшее число полюсов по схеме звезда/треугольник число витков уменьшается, а ток и мощность увеличатся в 1,73 раза. Значит при большей мощности и больших оборотах, а также при меньшей мощности и меньших оборотах вращающие моменты будут одинаковыми.
Наиболее простым способом получения двух разных чисел пар полюсов является устройство на статоре асинхронного двигателя двух независимых обмоток. Электротехнической промышленностью выпускаются такие двигатели с синхронными скоростями вращения 1000/1500 об/мин.
Существует, однако, ряд схем переключения проводников обмотки статора, при которых одна и та же обмотка может создать различные числа полюсов. Простое и широко распространенное переключение такого рода показано на рис. 1, а и б. Катушки статора, включенные последовательно, образуют две пары полюсов (рис. 1, а). Те же катушки, включенные в две параллельные цепи, как это показано на рис. 1, б, образуют одну пару полюсов.
Промышленность выпускает многоскоростные однообмоточные электродвигатели с последовательно-параллельным переключением и с отношением скоростей 1:2 с синхронными скоростями вращения 500/1000, 750/1500, 1500/3000 об/мин.
Описанный выше способ переключения не является единственным. На рис. 1, в приведена схема, образующая такое же число полюсов, как и схема, представленная на рис. 1, б.
Наибольшее распространение в промышленности получил, однако, первый способ последовательно-параллельного переключения , так как при таком переключении от обмотки статора может быть выведено меньше проводов, а следовательно, и переключатель может быть проще.
Рис. 1. Принцип переключения полюсов асинхронного двигателя.
Три фазовые обмотки могут быть включены в трехфазную сеть звездой или треугольником. На рис. 2, а и б показано широко распространенное переключение, при котором электродвигатель для получения меньшей скорости включается треугольником с последовательным соединением катушек, а для получения большей скорости — звездой с параллельным соединением катушек (так называемой двойной звездой).
Наряду с двухскоростными электропромышленность выпускает также трехскоростные асинхронные двигатели . В этом случае статор электродвигателя имеет две отдельные обмотки, одна из которых обеспечивает две скорости путем описанного выше переключения. Вторая обмотка, включаемая обычно в звезду, обеспечивает третью скорость.
При наличии на статоре электродвигателя двух независимых обмоток, каждая из которых допускает переключение полюсов, можно получить четырехскоростной электродвигатель. Числа полюсов подбирают при этом так, чтобы скорости вращения составили нужный ряд. Схема такого электродвигателя представлена на рис. 2, в.
Следует заметить, что вращающееся магнитное поле будет наводить в трех фазах неработающей обмотки три э. д. с, одинаковые по величине и сдвинутые по фазе на 120°. Геометрическая сумма этих электродвижущих сил, как известно из электротехники, равна нулю. Однако, вследствие неточной синусоидальности фазовых э. д. с. тока сети, сумма этих э. д. с. может быть отличной от нуля. В этом случае в замкнутой неработающей обмотке возникает ток, нагревающий эту обмотку.
В целях предотвращения этого явления схему переключения полюсов составляют таким образом, чтобы неработающая обмотка была разомкнута (рис. 12, в). Вследствие небольшой величины указанного выше тока у некоторых электродвигателей, разрыва замкнутого контура неработающей обмотки иногда не делают.
Выпускаются двухобмоточные трехскоростные двигатели , имеющие синхронные скорости вращения 1000/1500/3000 и 750/1500/3000 об/мин, и четырехскоростные двигатели, имеющие 500/750/1000/1500 об/мин. Двухскоростные двигатели имеют шесть, трехскоростные — девять и четырехскоростные — 12 выводов к переключателю полюсов.
Следует заметить, что существуют схемы двухскоростных двигателей, которые при одной обмотке позволяют получить скорости вращения, отношение которых не равно 1:2. Такие электродвигатели обеспечивают синхронные скорости вращения 750/3000, 1000/1500, 1000/3000 об/мин.
Путем использования специальных схем одной обмотки можно получить также три и четыре различных числа пар полюсов. Такие однообмоточные многоскоростные электродвигатели отличаются значительно меньшими габаритными размерами, чем двухобмоточные двигатели с теми же параметрами, что весьма важно для станкостроения.
Кроме того, у однообмоточных электродвигателей несколько выше энергетические показатели и меньше трудоемкость изготовления. Недостатком однообмоточных многоскоростных электродвигателей является наличие большего числа проводов, вводимых к переключателю.
Сложность переключателя определяется, однако, не столько числом выведенных наружу проводов, сколько числом одновременно осуществляемых переключений. В связи с этим были разработаны схемы, позволяющие при наличии одной обмотки получить три и четыре скорости при относительно простых переключателях.
Рис. 2. Схемы переключения полюсов асинхронного двигателя.
Такие электродвигатели выпускаются станкостроительной промышленностью при синхронных скоростях 1000/1500/3000, 750/1500/3000, 150/1000/1500, 750/1000/1500/3000, 500/750/1000/1500 об/мин.
Вращающий момент асинхронного двигателя может быть выражен известной формулой
где Iг — ток в цепи ротора; Ф — магнитный поток двигателя; ?2— угол сдвига фаз между векторами тока и э. д. с. ротора.
Рис. 3. Трехфазный многоскоростной электродвигатель с короткозамкнутым ротором.
Рассмотрим эту формулу применительно к вопросам регулирования скорости асинхронного двигателя.
Наибольшая продолжительно допустимая сила тока в роторе определяется допустимым нагревом и, следовательно, является примерно постоянной величиной. Если регулирование скорости ведется с постоянным магнитным потоком, то при всех скоростях двигателя наибольший длительно допустимый момент будет также величиной постоянной. Такое регулирование скорости называется регулированием с постоянным моментом.
Регулирование скорости изменением сопротивления в цепи ротора является регулированием с постоянным предельно допустимым моментом, так как магнитный поток машины при регулировании не изменяется.
Предельно допустимая полезная мощность на валу электродвигателя при меньшей скорости вращения (и, следовательно, большем числе полюсов) определяется выражением
где Iф1 — фазовый ток, предельно допустимый по условиям нагрева; Uф1 — фазовое напряжение статора при большем числе полюсов.
Предельно допустимая полезная мощность на валу электродвигателя при большей скорости вращения (и меньшем числе полюсов) где Iф2 — фазовый ток, предельно допустимый по условиям нагрева при второй схеме включения статора; Uф2— фазовое напряжение в этом случае.
При переходе от соединения треугольником к соединению звездой фазовое напряжение уменьшается в ?2 раза. Таким образом, при переключении со схемы а на схему б (рис. 2) получим отношение мощностей
Иначе говоря, мощность на меньшей скорости составляет 0,86 мощности на большей скорости вращения ротора. Имея в виду относительно небольшое изменение наибольшей длительно допустимой мощности на обеих скоростях, такое регулирование условно именуют регулированием при постоянной мощности.
Если при последовательном соединении половин каждой фазы воспользоваться соединением звездой, а затем переключить на соединение параллельной звездой (рис. 2, б), то получим
Таким образом, в данном случае имеет место регулирование скорости с постоянным моментом. У металлорежущих станков приводы главного движения требуют регулирования скорости с постоянной мощностью, а приводы подач — регулирования скорости с постоянным моментом.
Приведенные выше выкладки соотношения мощностей при высшей и низшей скоростях носят приближенный характер. Не была, например, учтена возможность повышения нагрузки на высоких скоростях вследствие белее интенсивного охлаждения обмоток; принятое равенство также очень приближенно. Так, для двигателя 4А имеем
В результате соотношение мощностей для этого двигателя P1/P2 = 0,71. Такие же примерно соотношения имеют место и для других двухскоростных двигателей.
Новые однообмоточные многоскоростные электродвигатели в зависимости от схемы переключения допускают регулирование скорости с постоянной мощностью и с постоянным моментом.
Небольшое число ступеней регулирования, которое может быть получено у асинхронных двигателей с переключением полюсов, обычно позволяет использовать такие двигатели на станках только при наличии специально сконструированных коробок скоростей.