Схема колеса грузового автомобиля
Компоновка колесно-ступичного узла
В связи с увеличением грузоподъемности автомобилей и повышением их динамических качеств возрастают требования, предъявляемые к конструкции колесно-ступичного узла.
Колеса и ступицы, относящиеся к неподрессоренной массе автомобиля, во многом определяют такие важные эксплуатационные свойства автомобиля, как плавность хода, устойчивость и безопасность движения, срок службы упругих элементов подвески, ходимость шин и теплонагруженность тормозных механизмов и колесно-ступичного узла в целом. От конструктивной схемы компоновки колеса со ступицей в значительной степени зависят долговечность и грузоподъемность автомобиля.
Крепление дисковых колес. Крепление к ступице дисковых колес легковых и грузовых автомобилей выполняют согласна ГОСТ 10408—74 и ГОСТ 10409—74*, а за рубежом в соответствии с национальными стандартами. На рис. 27 и в табл. 2 приведены конструкция и присоединительные размеры дисков и ступиц колес при одинарном и сдвоенном креплениях колес С Учетом требований рекомендации СЭВ PC 2334—76. В рекомендациях СЭВ число возможных вариантов сочетаний размеров сокращено по сравнению с числом вариантов в действующих стандартах. Это создаст определенные трудности в процессе внедрения рекомендаций в производство.
В настоящее время все большее внимание уделяют конструкции элементов крепления, в частности резьбовым соединениям. Колеса отечественных легковых автомобилей крепят на ступице с помощью четырех или пяти болтов. Основные схемы крепления колес легковых автомобилей рассмотрены выше (см. рис. 4). Конструкции крепления дисковых колес грузовых автомобилей более разнообразны. Схемы крепления колес обычно подразделяют на две группы. К первой группе относят крепления, которые обеспечивают центрирование колеса относительна оси вращения по фаскам крепежных отверстий. У второй группы требуемая точность установки колеса достигается в результате уменьшения зазора между поверхностью центрального отверстия и специальным посадочным пояском ступицы, т. е. колесо центрируется по центральному отверстию диска. Центрирование колес по сферическим фаскам крепежных отверстий используют на грузовых автомобилях ЗИЛ, ГАЗ, КрАЗ. Основные требования к конструкции деталей крепления колес определены в ГОСТ 10409—74.
Одинарное колесо (рис. 28, а) крепят к опорному фланцу ступицы гайкой, которую навертывают на шпильку. Между крепежными отверстиями диска и шпильками, а также между центральным отверстием и ступицей имеется достаточный зазор для центрирования колеса в радиальном направлении.
Рис. 28. Схемы крепления колес грузовых автомобилей:
А — одинарных; б — сдвоенных
Сдвоенные колеса крепят с помощью более сложной системы резьбовых деталей. На шпильки 1 (рис. 28, б) ступицы вначале устанавливают внутреннее колесо и прикрепляют его к опорному фланцу ступицы колпачковыми гайками (футорками) 2, имеющими внутреннюю и наружную резьбы. Затем устанавливают наружное колесо и прижимают его гайками к опорной поверхности диска внутреннего колеса. Обычно колесо грузового автомобиля крепят с помощью шести, восьми или десяти шпилек.
Многолетняя практика эксплуатации автомобилей показала, что такое крепление при правильном обслуживании надежно и точно центрирует как одинарные, так и сдвоенные колеса. Однако выявлены и существенные недостатки. Кроме увеличения на 2,5—7 кг массы резьбовых деталей возрастает концентрация напряжений на поверхности сферических фасок [3]. Согласно исследованиям напряжения на кромках отверстий только от затяжки гаек могут достигать 250—300 МПа. В процессе качения колеса статические напряжения дополняются динамическими, что приводит к преждевременному усталостному растрескиванию дисков. Особенно ускоряется этот процесс при эксплуатации колеса с моментом затяжки гаек, меньшим рекомендуемого.
В целях повышения долговечности колеса требуется периодически контролировать момент затяжки резьбовых соединений. У одинарных колес эту проверку легко выполнить, а у внутренних сдвоенных колес эта проверка резко усложняется. Чтобы проверить момент затяжки колпачковых гаек, необходимо предварительно отвернуть гайки наружного колеса. Это увеличивает трудоемкость обслуживания колесных узлов. В случае неправильного завинчивания гаек внутреннее колесо может оказаться незакрепленным, а наружное колесо будет зажато между центрирующими фасками колпачковой и наружной гаек (рис.29).
На рис. 30 показаны конструктивные схемы крепления одинарных и сдвоенных колес грузовых автомобилей, которые применяют в зарубежном автомобилестроении. Одинарные и сдвоенные колеса крепят одной гайкой (рис. 30, а), причем одинарное колесо центрируют по фаскам крепежных отверстий. У сдвоенных колес внутреннее колесо центрируют только по сферической поверхности шпилек, а наружное дополнительно центрируют по фаскам крепежных отверстий. Основным недостатком этой схемы является различная точность установки сдвоенных колес. Если оба сдвоенных колеса центрировать на ступице по фаскам крепежных отверстий (рис. 30,6), то этот недостаток устраняется. Однако, как показывают результаты экспериментов, срок службы диска в значительной мере зависит от площади контакта его с фланцем ступицы. При таком креплении внутреннее колесо не соприкасается со ступицей. Поэтому более рациональной является система крепления (рис. 30,в), которая обеспечивает плотное прилегание диска внутреннего сдвоенного колеса к фланцу ступицы.
Наиболее перспективными являются схемы крепления, изображенные на рис. 30, г, д. Принципиальное отличие их от ранее описанных заключается в способе центрирования колес и в конструкции резьбовых деталей. Колесо опирается поверхностью центрального отверстия па специальный поясок ступицы с зазором 0,35—0,7 мм. В узел крепления колес включаются шпильки и унифицированные для одинарных и сдвоенных колес гайки с плоской поверхностью давления. Применение центрирования колеса по посадочному пояску ступицы позволяет упростить форму крепежных отверстий и соответственно технологию изготовления их, так как не требуется дорогостоящая механическая обработка фасок.
Кроме того, допуски на размеры отверстий можно расширить, а точность их расположения повысить. Увеличение площади опорной поверхности гаек приводит к уменьшению давления на диск, в результате чего удлиняется его срок службы. Эта схема пригодна для крепления колес из легких сплавов. Недостатком такого способа центрирования колеса является затрудненные установка и особенно снятие колеса со ступицы. В связи со значительной массой колеса, собранного с шиной, и малым зазором между диском и ступицей при осевых перемещениях колеса может произойти «закусывание» контактирующих поверхностей.
Каждой системе крепления колес соответствуют свои моменты затяжки гаек. Оптимальный момент затяжки с точки зрения надежности крепления и обеспечения максимальной долговечности диска должен определяться по величине растягивающих усилий, действующих на шпильки. Эти усилия зависят не только от момента затяжки, но и от геометрических параметров резьбы, состояния трущихся поверхностей и т. д.
Крепление бездисковых колес. В отличие от дисковых колес бездисковые крепятся на ступицах по двум принципиально различным схемам. По первой схеме крепят колеса с продольно-разборным ободом (рис. 31,а, б), имеющим конические поверхности с углом наклона 28°. Основные присоединительные размеры колес и ступицы регламентированы ГОСТ 10409—74. Однако конструкции ступиц и деталей крепления разрабатывают индивидуально для каждого автомобиля с учетом конкретных технических требований. Одинарное колесо обычно устанавливают на ступицу так, что его замочная часть располагается снаружи автомобиля. Но на некоторых зарубежных автомобилях (HD-1200 фирмы «Комацу», Япония) крупногабаритные колеса устанавливают, напротив, замочной частью внутрь. Это повышает безопасность эксплуатации колес, так как склонное к саморазбортовке замочное устройство направлено внутрь автомобиля.
Вторую схему используют для крепления бездисковых колес С Поперечно-разборным ободом (рис. 31, в), имеющим ломаную поверхность контакта с углами наклона, равными 18 и 75°.
Крепление на ступицах 4 одинарных и сдвоенных колес / при обоих способах одинаково. Усилия на прижимах 2 создают затяжкой гаек 3 на закладных болтах (автомобили МАЗ, автобусы ЛиАЗ) или шпильках (автомобили КамАЗ, БелАЗ). Бездисковые колеса с цельным ободом крепят с помощью кольца 6 (рис. 31,г), которое приваривают к ободу.
Рис. 32. Компоновка узла колесо — ступица автомобиля: а—«Урал-375Д»; б —ЗИЛ-131
В связи с тем, что при втором способе колесо более точно устанавливается на ступице, этот способ является перспективным.
Схема колеса грузового автомобиля
Колеса грузовых автомобилей отличаются от колес легковых автомобилей не только размерами, но и конструкцией.
Разнообразие конструкций колес в основном объясняется широким диапазоном нагрузочных режимов и условий эксплуатации автомобилей. Более жесткие каркас, боковина и борт шины грузового автомобиля не позволяют монтировать ее на неразборный обод. Кроме того, обод, способный выдерживать высокие нагрузки, должен, иметь большую толщину профиля, что, в свою очередь, создает значительные трудности для его изготовления. Поэтому почти все колеса грузовых автомобилей выполняют с ободьями разборной конструкции.
Дисковые колеса. Дисковое колесо грузового автомобиля состоит из основания обода 4 (см. рис. 1,6), съемного разрезпога замочно-посадочного кольца 5 и съемного бортового кольца 6, которые в сборе образуют обод. К основанию обода, в его замочной части, приваривают диск 3.
Конструкцию обода совершенствуют в связи с возрастанием требований к надежности его соединения с шиной, необходимостью повышения несущей способности, снижения массы,, момента инерции, радиального и бокового биений.
Рис. 7. Конструкции колес грузовых автомобилей:
А — с плоским основанием обода;
Б — с ободом, имеющим коническую полку
Первые конструкции колеса имели обод с плоским основанием. Обод состоял из основания 3 (рис. 7,а), разрезного замочного кольца 2 и бортового кольца ). Для повышения безопасности конструкции замочное и бортовое кольца, иногда соединяли заклепками. Такая конструкция обода не обеспечивала надежного крепления бортов шины, что снижало ходимость шин и ухудшало эксплуатационные свойства автомобилей. Устранить отмеченные недостатки удалось путем введения на основании 3 (рис. 7, б) обода конической посадочной полки с углом наклона 5°, объединения бортового и замочного колец в одну деталь 4. В результате в зоне пятки шины обеспечилась более плотная посадка шины, однако остальная часть борта по-прежнему сопрягалась с ободом с зазором. Это значительно улучшило закрепление шины на ободе.
Устранить отмеченные недостатки удалось путем введения на основании 3 (рис. 7, б) обода конической посадочной полки с углом наклона 5°, объединения бортового и замочного колец в одну деталь 4. В результате в зоне пятки шины обеспечилась более плотная посадка шины, однако остальная часть борта по-прежнему сопрягалась с ободом с зазором. Это значительно улучшило закрепление шины на ободе.
На следующем этапе развития конструкции ободьев были созданы одинаковые условия для посадки обоих бортов. Для этого у колес, предназначенных для шин с нежестким каркасом, удлинили носок съемного бортового кольца, лежащий под бортом шины, а у колес, которые собирали с усиленными шинами повышенной грузоподъемности, съемную бортовую закраину стали изготовлять из двух самостоятельных деталей: бортового кольца и замочно-посадочного кольца. В настоящее время обе конструкции стандартизированы и их широко применяют.
В ГОСТ 10409—74* приведены основные геометрические параметры ободьев. Для колес грузовых автомобилей принят единый диаметр обода, равный 508 мм. При этом посадочный диаметр больше на удвоенную величину подъема посадочной полки, наклоненной под углом 5°, и равен 514,3 мм. Ободья существенно отличаются шириной и толщиной сечения профиля, формой бортовой закраины. Определенным сочетаниям геометрических размеров элементов бортовых закраин присвоены буквенные обозначения.
Результаты, полученные в ходе экспериментальных исследований напряженного состояния колес, позволили улучшить распределение металла по сечению обода. Например, в зонах концентрации напряжений, таких, как переход центральной части обода в посадочную полку и ее радиусное сопряжение с бортовой закраиной, толщину профиля увеличили, а в центральной части, где напряжения незначительны и распределены более равномерно, — уменьшили. В целях унификации конструкции дискового и бездискового колес повысили кольцевую жесткость замочной части обода, а на внутренней поверхности ввели коническую поверхность с углом наклона 28° для установки бездискового колеса на ступицу.
Рис. 8. Замочные устройства разборных ободьев
Для вывода вентиля камеры на ободе выполняют отверстие. В зависимости от типа устанавливаемой шипы (камерная или бескамерная) отверстие делают продолговатым или круглым. Форма, размеры и расположение вентильного отверстия стандартизованы. Чтобы облегчить разборку замочного устройства обода, на съемных разрезных деталях выполняют паз для размещения рабочих концов монтажного инструмента.
Значительные резервы для совершенствования конструкции колеса заложены в конструкциях съемной бортовой закраины и замочных устройств обода. В настоящее время разработаны ободья с укороченной съемной посадочной полкой (рис. 8, а) и со смещенным зубом замочно-посадочного кольца (рис. 8,6). Уменьшить расход металла и обеспечить универсальность (для камерных и бескамерных шин) ободу позволяет конструкция колеса, изображенная на рис. 9. Применение тороидальных посадочных полок в сочетании с монтажным ручьем малой глубины способствует одинаковому закреплению бортов шины, а при установке бескамерной шины — надежной герметизации ее внутренней полости без использования каких-либо дополнительных деталей для уплотнения. Расчеты показывают, что если заменить конструкцию серийного колеса с ободом 178—508 на конструкцию с тороидальными посадочными полками, то непод-рессоренная масса автомобиля ЗИЛ-130 уменьшится на 20—25 кг.
У грузовых автомобилей на переднем мосту обычно устанавливают одинарные колеса, а на заднем и промежуточном мостах — сдвоенные. Это делают в целях обеспечения равномерного распределения полной массы автомобиля по мостам и возможности применения единого типоразмера шин на всех мостах автомобиля. В отечественных и зарубежных стандартах регламентированы расстояния между сдвоенными колесами и допуск на него. Если это расстояние недостаточно, то в процессе качения колес боковины шин протираются вследствие соприкосновения в зоне наибольшей деформации.
Рис. 10. Колеса грузовых автомобилей диском
А — раскатанным; б — нераскатанным
Рис. 11. Схема ротационной раскатки диска:
А — исходное положение; б — конечное положение; 1 — оправка; 2 — заготовка; 3 — ролики; 4 — диск
При чрезмерно большом расстоянии нагрузка распределяется неравномерно между сдвоенными колесами. Чтобы исключить это, привалочную плоскость диска смещают относительно центра основания обода на определенную величину, а соприкасающиеся поверхности дисков колес выполняют плоскими.
Указанные выше условия определяют конструкцию дисков колес грузовых автомобилей. На протяжении нескольких десятилетий применяют плоскосферическую форму дисков (рис. 10). Вначале диски колес штамповали из листового проката, предварительно раскатанного в горячем состоянии (рис. 10,а). В результате раскатки центральная часть диска имела толщину 8—11 мм, а периферийная 3—4 мм. Уменьшение толщины профиля диска в направлении места соединения его с ободом целесообразно, так как одновременно с уменьшением сечения снижается изгибающий момент от нормальной нагрузки. Конструкция получается равнопрочной. Однако при горячей раскатке требуются значительные затраты труда, использование нагревательных устройств и раскатных станов.
Для снижения трудоемкости изготовления диска уменьшили его ширину и исключили операцию раскатки (рис. 10,6). Вместо приклепывания диска к центральной части основания обода стали приваривать диски к замочной части обода. Это упростило технологию изготовления и снизило расход металла. Например, диски четырехспицевой конструкции для колес с ободьями 178—508 штампуют в холодном состоянии из квадратной заготовки. Изготовление такой конструкции рационально, но при этом требуется более высокое качество выполнения сварных прерывистых швов, расположенных на одной из ответственных зон основания обода — замочной части.
В настоящее время за рубежом для изготовления дисков колес грузовых автомобилей применяют ротационную раскатку роликами 3 (рис. 11). Заготовка 2 прижимается к оправке 1, имеющей форму диска. Периферийную часть 4 диска раскатывают в холодном состоянии и одновременно формуют по поверхности оправки. Такой процесс изготовления позволяет значительно повысить качество поверхности и применить стали, трудно поддающиеся штамповке, с более высокими механическими свойствами. В результате использования такой технологии изготовления уменьшается расход металла и повышается сопротивление усталости диска.
В диске делают центральное отверстие для выхода ступицы, отверстия для прохода болтов крепления и вентиляционные отверстия. Число и размеры крепежных отверстий, а также геометрические параметры центрального отверстия стандартизованы.
В связи с тем что долговечность колеса в целом определяется уровнем сопротивления усталости диска, для ее повышения на сферической части диска обычно выполняют кольцевые ребра жесткости различной высоты. Их размеры подбирают экспериментально. Исследования показывают, что даже незначительные изменения формы периферийной части диска позволяют более чем в 2—2,5 раза повысить его долговечность [10].
Перспективными направлениями повышения сопротивления усталости колес, снижения их металлоемкости и трудоемкости изготовления являются оптимизация формы и толщины диска колес, схем их крепления и механических свойств применяемых материалов.
Бездисковые колеса. В настоящее время такие колеса все более широко применяются на грузовых автомобилях средней и большой грузоподъемности, у которых нормальная нагрузка на колесо превышает 20 кН. Так как долговечность дисковых колес определяется в основном сопротивлением усталости диска, то бездисковая конструкция должна иметь более высокие надежность, долговечность. Следовательно, используя бездисковое колесо, можно повысить грузоподъемность автомобиля без изменения размеров используемых колес. Производство таких колес более экономично, так как не требуется оборудования для изготовления диска и последующей сборки его с ободом. При отсутствии диска улучшается вентиляция тормозных механизмов, облегчается вывод вентиля внутреннего сдвоенного колеса наружу и т. д. Все это позволяет считать конструкцию бездисковых колес перспективной.