Схема импульсного вращения двигателя

Содержание
  1. Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию.
  2. § 2.3. Импульсное управление исполнительным двигателем постоянного тока
  3. § 2.4. Динамические характеристики исполнительных двигателей постоянного тока
  4. § 2.5. Конструкции исполнительных двигателей постоянного тока
  5. Импульсный регулятор оборотов для мотора
  6. Управление скоростью вращения двигателя на LM3578
  7. Характеристики импульсного регулятора
  8. Принципиальная схема импульсного регулятора
  9. ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ
  10. П О П У Л Я Р Н О Е:
  11. «ЖИВАЯ» И «МЕРТВАЯ» ВОДА
  12. Четырехточечные бинарные часы с ультра-простым дисплеем
  13. Ваш комментарий
  14. — НАВИГАТОР —
  15. ПОИСК от GOOGLE:
  16. 10-ка лучших статей
  17. Архивы статей
  18. Переводчик
  19. Подписка RSS
  20. Коротко о сайте:
  21. ШИМ регулятор оборотов: схема модуля управления мотором
  22. ШИМ регулятор оборотов электродвигателя постоянного тока рассчитанного на напряжение 12 В

Решение задач по ТОЭ, ОТЦ, Высшей математике, Физике, Программированию.

Главная Цены Оплата Примеры решений Отзывы Ccылки Теория Книги Сотрудничество Форум
Теория / Электрические микромашины / Лекция 20. Импульсное управление исполнительным двигателем постоянного тока

§ 2.3. Импульсное управление исполнительным двигателем постоянного тока

В связи с развитием полупроводниковой техники все шире применяется импульсное управление исполнительным двигателем. Суть его заключается в том, что частоту вращения двигателя регулируют не величиной постоянно подводимого напряжения, а длительностью питания двигателя номинальным напряжением. Одна из возможных схем импульсного управления приведена на рис. 2.7,а. Там же (рис. 2.7,б) показаны графики скорости при различных t.

В период, когда электронный ключ открыт, питающее напряжение полностью подается на двигатель, ток якоря увеличивается, двигатель развивает положительный момент и частота вращения возрастает; когда электронный ключ закрыт, ток под действием запаса электромагнитной энергии продолжает протекать в том же направлении но через обратный диод. При этом он уменьшается, момент двигателя уменьшается, угловая скорость вращения падает.

Рис. 2.7. Схема импульсного управления (а), графики скорости вращения (б) при разных τ. (τ2 > τ1)

Работа двигателя состоит из чередующихся периодов разгона и торможения. И, если эти периоды малы по сравнению с электромагнитной постоянной времени якорной цепи Тэм.а, устанавливается некая средняя скорость, однозначно определяемая относительной продолжительностью включения (скважностью) t = tи/T, где tи — длительность импульса напряжения; T — период.

Частота управляющих импульсов составляет 200-400 Гц, в результате период управления Т оказывается на 2 порядка меньше электромагнитной постоянной времени обмотки якоря

Управление, при котором изменяется соотношение длительности импульса tи и паузы tп при постоянном периоде Т, называется широтно-импульсным.

Если параметры схемы подобраны так, что колебания тока, момента и угловой скорости вращения небольшие, работа двигателя практически не отличается от работы при постоянном напряжении, за которое можно принять среднее напряжение за период управления Т: Uср = Uномtи/T = tUном.

Оперируя средними значениями, получим уравнение, аналогичное (2.4), поскольку в данном случае мы имеем якорное управление

На рис. 2.8,а показаны графики тока сети (Ic) и тока якоря (Ia) при относительно больших нагрузках. При малых нагрузках ток двигателя становится небольшим и появляются периоды, когда при закрытом электронном ключе ток якоря уменьшается до нуля. Говорят, наступил режим прерывистых токов (рис.2.8,б). Механические характеристики приобретают перелом и становятся похожими на характеристики двигателя при регулировании реостатом в цепи якоря. В общем случае они имеют вид, представленный на рис. 2.9. Зона, соответствующая прерывистым токам, ограничена пунктирной линией. Критическая относительная частота вращения, при которой наступает перелом, равна

Рис. 2.8. Графики тока сети Ic и тока якоря Ia при больших нагрузках (а) и тока якоря при малых нагрузках (б)

Основное преимущество импульсного управления заключается в уменьшении средней потребляемой мощности за счет уменьшения среднего тока.

§ 2.4. Динамические характеристики исполнительных двигателей постоянного тока

Механические характеристики исполнительных двигателей постоянного тока линейные, поэтому для них выражение электромеханической постоянной времени будет иметь известный вид (1.11).

При якорном управлении характеристики параллельные, т.е. пусковой момент и угловая скорость холостого хода изменяются пропорционально коэффициенту сигнала: Мп = aМб, w0 = awб. В этом случае постоянная времени, а следовательно и быстродействие, не зависят от коэффициента сигнала.

При полюсном управлении пусковой момент прямо- а угловая частота вращения холостого хода обратно пропорциональны коэффициенту сигнала: Мп = aМб, w0= wб/a. Постоянная времени будет Тм = Jwббa 2 . Видно, что при полюсном управлении быстродействие в сильной степени зависит от коэффициента сигнала, ухудшаясь с его уменьшением.

§ 2.5. Конструкции исполнительных двигателей постоянного тока

По конструкции исполнительные двигатели можно разделить на двигатели с ферромагнитным якорем и малоинерционные, не имеющие ферромагнитного сердечника якоря.

Двигатели с ферромагнитным якорем и обмоткой возбуждения отличаются от обычных машин лишь тем, что имеют полностью шихтованную магнитную систему (якорь, полюса, станину), что продиктовано стремлением уменьшить потери в стали и увеличить быстродействие в переходных режимах. Это двигатели серий СЛ, МИ, ПБС и др. Есть двигатели (серии ДП и ДПМ), в которых роль обмотки возбуждения выполняют постоянные магниты. В остальном они ничем не отличаются от названных выше.

Существуют двигатели, например серии МИГ, в которых обмотка якоря располагается не в пазах (их нет), а непосредственно на поверхности якоря, закрепляясь на ней с помощью специального клея и бандажей. «Беспазовое» исполнение обмотки значительно уменьшает ее индуктивность, улучшает коммутацию и увеличивает быстродействие. Недостатком гладкого якоря является большой немагнитный промежуток между ним и полюсом, что увеличивает размеры обмотки возбуждения.

Малоинерционные двигатели выпускаются двух типов: 1) с дисковым якорем и печатной обмоткой; 2) с полым немагнитным якорем и обычной обмоткой. Один из вариантов двигателя первого типа показан на рис. 2.14. В его состав входят: дисковый якорь 1, выполненный из тонкого изоляционного материала, на обеих сторонах которого фотохимическим методом нанесена обмотка якоря; кольца 2 и 3 из магнитомягкой стали, по которым замыкается магнитный поток, созданный постоянными магнитами 4, и щетки 5, непосредственно касающиеся оголенных проводников якоря. Как видно, здесь отсутствует отдельный коллектор.

Двигатель второго типа показан на рис. 2.15.

Якорь малоинерционных двигателей примерно в 8 раз легче, а момент инерции в 5¸10 раз меньше, чем у обычного двигателя. В результате их постоянные времени в 2¸ 2,5 раза меньше. К тому же они имеют практически безыскровую коммутацию, поскольку их секции обладают меньшей индуктивностью. К недостаткам таких двигателей можно отнести большой воздушный зазор, а, следовательно, большие габариты по сравнению с обычными машинами.

Импульсный регулятор оборотов для мотора

Управление скоростью вращения двигателя на LM3578

Предлагаем для рассмотрения простую схему регулировки оборотов двигателя постоянного тока, например для сверления печатных плат на микросхеме LM3578. Данная IC — это импульсный регулятор, который может быть приспособлен для мотора не только для сверления печатных плат.

Характеристики импульсного регулятора

  • Напряжение питания (V+) от DC 6 до 30V.
  • Напряжение питания (V+) выбирается в зависимости от номинального напряжения электродвигателя.
  • Максимальный ток стока IRF540 до 22А.
  • Процент регулировки от 0 до 90% путем регулирования R2.

Принципиальная схема импульсного регулятора

В LM3578 имеет инвертирующий и не инвертирующий входы квитирования (pin1 и pin2).

В схеме C2 — конденсатор синхронизации, который определяет частоту внутреннего генератора импульсов IC.

С pin5 поступают импульсы на Q1 IRF540, который и управляет мотором (M).

С помощью переменного резистора R2 регулируем скорость мотора .

Диод D1 защищает MOSFET Q1 от переходных процессов, полученных от коллектора мотора.

Конденсатор C3 — фильтр по питанию.

Схема регулятора собрана на IC LM3578 — это очень эффективный интегрированный регулятор, который можно использовать радиолюбителю в различных целях.

ПОДЕЛИТЕСЬ С ДРУЗЬЯМИ

П О П У Л Я Р Н О Е:

Для анимации каких-либо игрушек, для подарка или просто для творчества можно собрать схему «бегущего огня».

Эффект создания огней бегущих из центра к краям. Очень похоже на лучи солнышко.

Характеристики:

  • Кол-во каналов — 3;
  • Кол-во светодиодов — 18 шт;
  • Uпит.= 3…12В.

«ЖИВАЯ» И «МЕРТВАЯ» ВОДА

В журнале «Изобретатель и рационализатор» № 2 за 1981 г. была опубликована статья Т. Латышева под заголовком «Неожиданная вода». Что же это за «неожиданная вода»? Это обыкновенная вода, обработанная пульсирующим электрическим током постоянного направления. Два электрода, помещенные в воду, разделяются пористой перегородкой. Электрический ток, проходя через воду, разлагает часть ее на ионы водорода Н+ и гидроксильную группу ОН-. Под действием электрического поля в воде эти ионы расходятся к противоположным электродам через пористую перегородку.

Четырехточечные бинарные часы с ультра-простым дисплеем

Предложенные часы не тикают, не имеют ярких ЖК-дисплеев или светодиодов и нет никакой тревоги (будильника).

Показ времени только четырьмя разноцветными точками света. Я не думаю, что эти часы намного сложны, чем обычные.
Подробнее…

Ваш комментарий

ПОИСК от GOOGLE:

10-ка лучших статей

  • Простой и надёжный металлоискатель своими руками — 209 473 просм.
  • Ремонт микроволновой печи своими руками — 195 577 просм.
  • Зарядное из компьютерного блока питания. — 192 397 просм.
  • Простой металлоискатель своими руками — 187 567 просм.
  • Автомобильные зарядные устройства. Схемы. Принцип работы. — 167 798 просм.
  • Простая и надёжная схема терморегулятора для инкубатора — 159 375 просм.
  • Разнообразие простых схем на NE555 — 127 108 просм.
  • Простое автоматическое зарядное устройство — 124 624 просм.
  • Самогонный аппарат своими руками — 111 431 просм.
  • Простой импульсный металлоискатель «ПИРАТ» — 109 948 просм.

Архивы статей

Переводчик


Мы в соц.сетях:

Подписка RSS

Подпишитесь на нашу RSS-ленту, чтобы получать новости сайта. Будь всегда на связи!

Коротко о сайте:

Мастер Винтик. Всё своими руками! — это сайт для любителей делать, ремонтировать, творить своими руками! Здесь вы найдёте бесплатные справочники, программы.
На сайте подобраны простые схемы, а так же советы для начинающих самоделкиных. Часть схем и методов ремонта разработана авторами и друзьями сайта. Остальной материал взят из открытых источников и используется исключительно в ознакомительных целях.

Вы любите мастерить, делать поделки? Присылайте фото и описание на наш сайт по эл.почте или через форму.
Программы, схемы и литература — всё БЕСПЛАТНО!

Если сайт понравился, добавьте в избранное (нажмите Ctrl + D), а также можете подписаться на RSS новости и всегда получать новые статьи по ленте.
Если у вас есть вопрос по схеме или поделке? Добро пожаловать на наш ФОРУМ!
Мы всегда рады оказать помощь в настройке схем, ремонте, изготовлении поделок!

ШИМ регулятор оборотов: схема модуля управления мотором

ШИМ регулятор оборотов двигателя постоянного тока проще всего организовать с помощью ШИМ регулятора. ШИМ — это широтно-импульсная модуляция, в английском языке это называется PWM — Pulse Width Modulation. Теорию я подробно объяснять не буду, информации полно в интернете.

ШИМ регулятор оборотов электродвигателя постоянного тока рассчитанного на напряжение 12 В

Своими словами — если у нас есть двигатель постоянного тока на 12 вольт — то мы можем регулировать обороты двигателя изменяя напряжение питания. Изменяя напряжение питания от нуля до 12 вольт будут изменятся обороты двигателя от нуля до максимальных. В случае с ШИМ регулятором мы будем изменять скважность импульсов от 0 до 100% и это будет эквивалентно изменению напряжения питания двигателя и соответственно будут изменятся обороты двигателя.

Рассмотрим первый ШИМ регулятор на 5 ампер. Есть такая самая любимая микросхема всех радиолюбителей — это таймер NE555 ( или советский аналог КР1006ВИ). Вот на этой микросхеме и собран ШИМ регулятор. Кроме таймера здесь я использую стабилизатор на 9 вольт LM7809, мощный полевой транзистор с N-каналом IRF540, сдвоенный диод Шоттки, а также другие мелкие детали. Схема по которой собран этот регулятор всем известна и очень популярна.


Печатку этой платы можно скачать — ШИМ 5A

В более мощном исполнении я применяю просто параллельное включение нескольких полевых транзисторов IRF540 и более мощный сдвоенный диод Шоттки. В остальном всё аналогично.


Печатку этой платы можно скачать — ШИМ 10A

Подключение ШИМ регулятора очень простое. Вы видите 4 клеммы — две клеммы для подачи питания (+) и (-), и две клеммы для подключения мотора (M+) и (M-).

Сделал еще ШИМ регулятор с защитой по току. Для этих целей использовал распространенный операционный усилитель LM358 и два оптрона PC817. При превышении тока, который мы задаем подстроечником R12, срабатывает триггер-защелка на операционнике DA3.1, оптронах DA4 и DA5 и блокируется генерация импульсов по 5 ноге таймера NE555. Чтобы снова запустить генерацию нужно кратковременно снять питание со схемы с помощью кнопки S1.


Печатку этой платы можно скачать — ШИМ 10А с защитой

ШИМ регуляторы все работоспособны, проверил их работу с помощью двигателя от шуруповерта.

ШИМ регулятор оборотов

Читайте также:  Газель 405 двигатель инжектор сколько масла
Оцените статью