- Трехфазный двигатель в однофазной сети без конденсаторного запуска
- Принцип работы электронного ключа
- Схема запуска электродвигателя до 2 кВт
- Описание технологии
- Особенности монтажа
- Принципы наладки
- Проверенные модели
- Две схемы на симисторах
- Запуск легкого электродвигателя
- Схема пуска двигателя под нагрузкой
- Особенности наладки
- Мое мнение о методе
- Страничка электрика
- Электронный запуск электродвигателей
Трехфазный двигатель в однофазной сети без конденсаторного запуска
В статье собраны советы, как можно подключить такой электродвигатель в однофазную сеть без использования конденсаторной батареи или частотного преобразователя за счет импульса тока от электронного ключа. Они дополняются схемами и видеороликом.
Принцип работы электронного ключа
Если собрать обмотки асинхронного электродвигателя по схеме треугольника и подключить к напряжению однофазной сети 220 вольт, то через них станут протекать одинаковые токи, как показано на графике ниже.
Угловое смещение любой обмотки относительно других составляет 120 градусов. Поэтому магнитные поля от каждой из них будут складываться, устранять взаимное влияние.
Создаваемое результирующее магнитное поле статора не будет оказывать влияние на ротор: он останется в состоянии покоя.
Чтобы электродвигатель начал вращение необходимо через его обмотки пропустить сдвинутые на 120° токи, как это делается в нормальной трехфазной системе питания или за счет подключения частотного преобразователя. Тогда двигатель станет вырабатывать мощность с минимальными потерями, обладая наибольшим КПД.
Широко распространённые промышленные схемы запуска трехфазного двигателя в однофазной сети позволяет ему работать, но с меньшим КПД и большими потерями, что, чаще всего, вполне допустимо.
Альтернативными методами являются:
- Механическая раскрутка ротора, например, за счет ручной намотки шнура на вал и резкого его прокручивания рывком при поданном напряжении;
- Сдвиг фаз токов за счет кратковременного использования электронного ключа, коммутирующего электрическое сопротивление одной обмотки.
Поскольку первый способ «намотал и дернул» не вызывает трудностей, то сразу анализируем второй.
На верхней схеме показан подключенный параллельно обмотке B электронный ключ «k». Это довольно условное обозначение принято для объяснения принципа работы электродвигателя за счет формирования токового импульса.
Как запускается двигатель
Обмотки статора подключены по схеме треугольника. На одну из них (A) подается напряжение 220 вольт. Параллельно ей подключена еще одна цепочка из двух последовательных обмоток (B+C).
По закону Ома напряжение сети создает в них токи. Их величина зависит от сопротивления. Все обмотки одинаковы. Поэтому в (A) ток больше, а (B+C) в 2 раза меньше по величине. Причем по фазе они совпадают. При такой ситуации они не способны создать вращающееся магнитное поле, достаточное для запуска ротора.
Параллельно обмотке (B) подключена электронная схема, обозначенная как ключ K. Он находится в разомкнутом состоянии, но кратковременно замыкается в момент достижения максимального напряжения на обмотке С.
Электронный ключ закорачивает обмотку В и падение напряжения на обмотке С скачком возрастает в два раза, что в итоге и обеспечивает сдвиг фаз токов в обмотках А и С. Важно отметить, что ток в обмотках (А) и (В+С) в этот момент равен нулю.
Угол сдвига фаз φ, необходимый для запуска двигателя, достаточно выдержать в интервале 50÷70°, хотя идеальный вариант — 120.
Конструкция фазосдвигающего электронного ключа может собираться из разных деталей. Наиболее подходящие устройства для бытовых целей по мере их сложности представлены ниже.
Схема запуска электродвигателя до 2 кВт
Ее описание можно найти в №6 журнала Радио за 1996 год. Автор статьи В Голик предлагает конструкцию двунаправленного (положительной и отрицательной полугармоник) электронного ключа на двух диодах и тиристорах с управлением транзисторным блоком.
Описание технологии
Силовые диоды VD1 и VD2 совместно с тиристорами VS1, VS2 образуют мост, который управляется прямым и обратным биполярными транзисторами. Положение подстроечного резистора R7 влияет на напряжение открытия VT1, VT2.
Срабатывание транзисторного ключа обеспечивает кратковременный сдвиг фаз токов в обмотках и создание вращающегося магнитногого поля, раскручивающего ротор.
Благодаря приложенному моменту магнитных сил к ротору, последний начинает вращение. Его энергия постоянно пополняется на каждой полуволне очередным импульсом.
Особенности монтажа
Автор выполнил электронный ключ на стеклопластиковой плате и поместил его в изолированный корпус с возможностью подключения входных и выходных цепей через контактные выводы. Вариант исполнения схемы навесным монтажом тоже имеет право на реализацию.
Для работы электродвигателей небольших мощностей допустимо силовые диоды и тиристоры размещать без радиаторов. Но обеспечить хороший теплоотвод с них и надежную работу лучше заранее, включив эти элементы в конструкцию электронного ключа.
Номиналы электронных компонентов указаны прямо на схеме.
С целью обеспечения безопасности следует хорошо выполнить изоляцию корпуса электронного блока, исключить случайное прикосновение к его деталям во время работы: они все находятся под напряжением 220 вольт.
Принципы наладки
Ползунок резистора R7 «Режим» имеет два крайних положения:
- минимального;
- и максимального сопротивления.
В первом случае электронный ключ открыт и создает максимальный импульс сдвига тока в обмотке, а во втором — закрыт: вращение ротора исключено.
Запуск трехфазного двигателя осуществляют на максимально допустимом сдвиге фазы тока внутри обмотки. Затем положением R7 выставляют его рабочие обороты и мощность.
Проверенные модели
Автор опробовал схему на двигателях с:
- числом оборотов 1360 и мощностью 370 ватт (АААМ63В4СУ1);
- 1380 об/мин, 2 кВт.
Результаты экспериментов его устроили.
Вместо рекомендованных силовых диодов и тиристоров можно использовать любые другие полупроводниковые элементы. Но, следует обращать внимание на их рабочий ток не менее 10 ампер и обратное напряжение от 300 вольт.
Две схемы на симисторах
Следующие 2 конструкции электронного ключа описал В Бурлако в 1999 году. Они опубликованы в журнале Сигнал №4.
Запуск легкого электродвигателя
Устройство разработано для двигателей с мощностью до 2,2 кВт, имеет минимальный набор электронных деталей.
Конденсатор С, обладая емкостным сопротивлением, под действием приложенного к его пластинам напряжения, сдвигает вектор тока вперед на 90 градусов, направляя его на управление динистором VS2.
Разность потенциалов на конденсаторе регулируется суммарным сопротивлением R1, R2. Импульс динистора поступает на управляющий электрод симистора VS1, который вбрасывает ток в обмотку электродвигателя.
Схема пуска двигателя под нагрузкой
Для станков и механизмов, создающих большое противодействие раскрутке ротора, можно порекомендовать переключить обмотки на схему разомкнутой звезды с созданием двух раскручивающих моментов.
Полярность обмоток двигателя указана точками на схеме. Фазосдвигающие цепочки импульсов тока работают по той же технологи, что и в предыдущих случаях. Номиналы электрических деталей проставлены рядом с их графическими обозначениями.
Особенности наладки
Автор Бурлако подавал напряжение на двигатель трехфазным пускателем SG1 марки ПНВС-10, которым комплектовались старые активаторные стиральные машины.
Все три контакта этого пускателя при нажатии на кнопку «Пуск» замыкаются одновременно, а при отпускании:
- два крайних остаются в замкнутом состоянии;
- средний — разрывается, отключая цепь пусковой обмотки.
Через этот средний контакт в обеих схемах подается импульс тока. Схема работает только на время, необходимое для раскрутки двигателя, после чего выводится из работы, отключается от питающего напряжения.
Момент запуска двигателя в каждой схеме подбирают после подачи напряжения изменением сопротивления R2. При этом в треугольнике до момента раскрутки ротора проходят большие токи, вызывающие сильные вибрации конструкции. Для их уменьшения рекомендуется подбирать фазосдвигающий импульс ступенями, а не плавно.
При оптимальном положении R2 двигатель запускается без вибраций.
Для двигателей небольшой мощности можно осуществлять монтаж симисторов без радиаторов охлаждения, но последние все же повышают надежность схемы.
Мое мнение о методе
Рекомендую обратить внимание на следующий вывод.
В трех рассмотренных схемах ток рабочего режима протекает по всем подключенным обмоткам. Полное расходование приложенной энергии тратится не рентабельно. Только около 30% ее мощности создает вращение ротора. Остальная часть порядка 70% — безвозвратные потери.
Если кого-то устраивает запуск трехфазного двигателя в однофазной сети по этой схеме, то это ваш выбор. Я же сделал обзор этих схем, чтобы показать их положительные и отрицательные стороны, не навязывая собственное мнение.
Этой темой стали массово пользоваться создатели видеороликов на Ютубе, набирая количество просмотров и подписчиков, как ЮКА ЛАХТ, в своем видео «Без конденсаторный запуск трехфазного двигателя».
Делайте выбор осознанно, а если остались вопросы по теме, то сейчас вам удобно задать их в комментариях.
Страничка электрика
Электронный запуск электродвигателей
В статье приведены схемы электронного запуска электродвигателей с пусковой обмоткой различной бытовой и промышленной техники, которая выпускается с пусковыми устройствами, содержащими электрические контакты. Описываются принципы работы, наладки и конструктивные особенности электронных пусковых устройств на тиристорах и симисторах, даны рекомендации по изготовлению и эксплуатации этих устройств.
Однофазные электродвигатели с пусковой обмоткой применяются в холодильниках, электрозаточных, деревообрабатывающих станках и другой разнообразной бытовой технике.
Для запуска таких двигателей применяются пусковые реле или специальные выключатели, которые после запуска двигателя выключают пусковую обмотку. Подача и отключение напряжения в этих устройствах осуществляется через электрические контакты, которые, естественно, искрят и подгорают в процессе эксплуатации, что существенно снижает их срок службы, а при потере контакта приводит к повреждению двигателя.
Некоторыми авторами предложены схемы с электронными устройствами, которые снижают токи через электрические контакты, но не исключают их полностью.
Автором разработана и использована для некоторых бытовых устройств электронная схема запуска, которая в течение длительного времени показала надежную работу.
Работа данной схемы основана на запирании диодного моста, включенного в цепь управления тиристоров или симистора, при заряде конденсатора постоянным током диодного моста (рис.1). Во время заряда конденсатора тиристоры открыты, и все напряжение поступает в нагрузку. После полного заряда конденсатора ток через управляющие электроды прекращается, тиристоры запираются, и напряжение от нагрузки отключается. Время открытого состояния тиристоров определяется емкостью конденсатора, т.е. это своего рода реле времени, которое через определенное время отключает нагрузку. Для повторного включения нагрузки необходимо разрядить конденсатор, иначе он длительное время будет держать диоды моста и тиристоры в закрытом состоянии.
Для устройств, которые включаются с помощью выключателя, необходимо использовать тумблер с двумя перекидными контактами, один из которых при включении нагрузки подключал бы к конденсатору резистор номиналом 10. 100 кОм Практически действующая схема для запуска электродвигателя бытового заточного станка мощностью 210 Вт показана на рис.2.
В связи с разбросом параметров тиристоров схема требует несложной наладки, которая заключается в подборе конденсатора необходимой емкости, от которой зависит время подачи напряжения на пусковую обмотку. Это время должно быть минимальным, но достаточным для надежного запуска двигателя при пониженном напряжении питающей сети до допустимого минимума 180 В.
Необходимо отметить, что ток заряда конденсатора составляет доли миллиампера, поэтому диодный мост может быть маломощным, но рассчитанным на напряжение не менее 300 В, а конденсатор — на напряжение не менее 400 В, так как при пробое конденсатора пусковая обмотка окажется под полным напряжением сети, что может вывести из строя электродвигатель. К этому также может привести пробой любого элемента схемы. Учитывая, что надежность используемых элементов часто неизвестна, необходимо некоторое время понаблюдать за работой схемы. Для этого временно или постоянно параллельно электронному выключателю необходимо подключить светодиод с гасящим резистором. После запуска двигателя на электронном выключателе появляется сетевое напряжение, и светодиод начинает светиться, что свидетельствует о том, что пусковая обмотка отключено.
Для электродвигателей, которые включаются и выключаются автоматически, как в холодильнике, разряд конденсатора осуществляется через резистор от 10 до 100 МОм, подключенный параллельно конденсатору. Этот резистор большого номинала не влияет на заряд конденсатора и не открывает тиристоры, так как ток через этот резистор мал (составляет микроамперы) и его недостаточно для открывания тиристоров. После запуска двигателя заряд конденсатора (R1 отключен от С1) поддерживается микротоками, не способными открыть тиристоры. После автоматического отключения двигателя датчиком устройства конденсатор успевает разрядиться до следующей подачи напряжения на двигатель.
Эксперименты показали, что чем больше мощность двигателя, тем большего номинала требуется резистор R1. Например, при тех же тиристорах для двигателя мощностью 210 Вт минимальное сопротивление резистора составляло 9 МОм, а для двигателя мощностью 800 Вт — 18 МОм. После снятия напряжения, через несколько секунд, двигатель готов нормально запуститься. Это говорит о том, что увеличение сопротивления данного резистора на 30. 50% от минимального не повлияет на работу устройства, например холодильника, а только повысит надежность отключения пусковой обмотки при завышенном напряжении сети. Например, разряд конденсатора емкостью 0,1 мкФ на резистор сопротивлением 20 МОм происходит за время t=RC=2 с. Эксперименты также показали, что емкость конденсатора и сопротивление разрядного резистора подбираются индивидуально в зависимости от параметров тиристоров или симистора, мощности двигателя и необходимого времени надежного запуска
Практическая схема электронного запуска двигателя заточного станка мощностью 210 Вт на симисторе показана на рис.3. Наладка данной схемы аналогична схеме на тиристорах.
Для двигателей мощностью до 2 кВт тиристоры могут устанавливаться без радиаторов. Диоды VD1 и VD2 (рис.2) можно заменить резисторами номиналом 120. 160 кОм, а при использовании тиристоров с близкими параметрами схема нормально работает и без этих элементов. Детали R2, VD3 и VD4 можно убрать после испытаний схемы в течение некоторого времени. Отключение пусковой обмотки в период испытаний схемы можно контролировать вольтметром. Необходимо отметить, что приведенные схемы также можно использовать в качестве таймеров для бесконтактного отключения мощных электрических устройств через необходимое время, подобрав соответствующий номинал С1 и тип симистора (тиристоров), например аппаратов точечной сварки, нагревателей для сварки пластиковых труб, кратковременного освещения больших помещений и т.п.