Схема для запуска однофазного двигателя

Содержание
  1. Пуск однофазного электродвигателя: инструкция для применения на практике
  2. Пуск однофазного двигателя вспомогательной фазой
  3. Пуск вспомогательной фазой с добавленным сопротивлением
  4. Пуск однофазного электродвигателя вспомогательной фазой с конденсатором
  5. Результат работы схемы конденсаторного пуска
  6. Конструкции электромоторов с расщеплёнными кольцами
  7. Пуск электродвигателя на три фазы в однофазном режиме
  8. Видео пример подключения электрического мотора
  9. Схемы подключения однофазных электродвигателей
  10. Обмотки электромотора
  11. Укладка обмоток в статоре однофазного электродвигателя
  12. Особенности формирования вращающего момента
  13. Варианты создания сдвига фаз
  14. Конденсаторы
  15. Косвенное включение
  16. Подключение однофазного двигателя
  17. Особенности применения магнитного пускателя
  18. Схема подключения однофазного двигателя
  19. Заключение
  20. Как подключить однофазный двигатель
  21. Асинхронный или коллекторный: как отличить
  22. Как устроены коллекторные движки
  23. Асинхронные
  24. Схемы подключения однофазных асинхронных двигателей
  25. С пусковой обмоткой
  26. Конденсаторный
  27. Схема с двумя конденсаторами
  28. Подбор конденсаторов
  29. Изменение направления движения мотора

Пуск однофазного электродвигателя: инструкция для применения на практике

Главная страница » Пуск однофазного электродвигателя: инструкция для применения на практике

Характерная черта однофазных электродвигателей – эти аппараты не способны запускаться без сторонней поддержки (без наличия второстепенной обмотки). Как правило, однофазные моторы имеют только одну — основную обмотку статора. На практике используются разные способы, направленные на пуск однофазного электродвигателя и последующей работы.

Пуск однофазного двигателя вспомогательной фазой

Благодаря применяемым способам, удаётся вводить однофазные аппараты в нормальный режим эксплуатации. Рассмотрим существующие и часто применяемые варианты запуска однофазных электромоторов, дабы использовать при необходимости.

Структурное построение электрической основы двигателя, в данном случае, отмечается наличием на статорном кольце двух обмоток (основной и второстепенной), геометрически смещённых на 90°.

Когда происходит включение однофазного мотора, ток ( Т1 ) протекает по основной обмотке. Поскольку исполнение катушек статора разное, в контуре второстепенной обмотки циркулирует ток ( Т2 ), более слабый и заметно сдвинутый на ф/2.

Магнитные поля, генерируемые токами ( Т1) и ( Т2 ), сдвинуты по фазе относительно друг друга. Это смещение способствует образованию магнитного поля вращения, достаточно сильного, чтобы однофазный электродвигатель запустился в работу, правда, без учёта нагрузки.

Схема пуска однофазного мотора: 1 — второстепенная фаза; 2 — основная фаза; 3 — центробежная муфта сцепления; L1, L2 — линия питающего напряжения

Как только вал двигателя достигнет 80% номинального значения скорости вращения, вспомогательная фаза отключается центробежной муфтой сцепления или остаётся поддерживаемой в рабочем состоянии.

Таким образом, статор однофазного электродвигателя фактически представляет двухфазную организацию, как в режиме запуска, так и в рабочем режиме.

Соединения фазы допустимо инвертировать, получая таким способом изменение направления вращения. Поскольку значение начального крутящего момента низкое, рекомендуется поднимать этот параметр, увеличением смещения между полями катушек.

Пуск вспомогательной фазой с добавленным сопротивлением

Резистор, включенный с фазой вспомогательного толка последовательно, способствует увеличению импеданса этой фазы и увеличению разницы между токами ( Т1 ) и ( Т2 ). Рабочий режим однофазного электродвигателя после завершения пуска, в данном случае, ничем не отличается от первого схемного варианта.

Схема пуска однофазного электродвигателя с резисторами: 1 — основная обмотка; 2 — резистор 1; 3 — второстепенная обмотка; 4 — резистор 2; 5 — центробежная муфта сцепления; 6 — мотор

На основе этого решения возможна к применению также несколько иная схема, где сопротивление заменяется индуктивностью. Существенной разницы между этими двумя решениями не наблюдается. Однако посредством применения индуктивности значительно проще выстраивать смещение между токами Т1 и Т2 .

Пуск однофазного электродвигателя вспомогательной фазой с конденсатором

Конденсаторная схема считается наиболее распространенной для практики управления работой однофазных электромоторов. Отличительная особенность такой схемы – конденсатор, установленный на второстепенной обмотке.

Для постоянного конденсатора рабочее значение составляет около 8 мкФ с расчётом установки на однофазный электродвигатель до 200 Вт мощности. В режиме пуска однофазного электродвигателя больше указанной мощности, потребуется дополнительный конденсатор ёмкостью не менее 16 мкФ.

Включение дополнительной ёмкости в цепь обмотки электромотора потребуется только при пуске, после чего этот конденсатор выключается из схемы автоматически с помощью реле или ручным переключателем.

Результат работы схемы конденсаторного пуска

Поскольку конденсатор пусковой формирует фазовый сдвиг, противоположный одной индуктивности в режиме пуска и последующей работы, двигатель функционирует подобно двухфазному мотору с вращающимся полем.

Схема — пуск мотора с конденсатором: 1 — вспомогательная фаза; 2 — основная фаза; 3 — центробежная муфта сцепления; 4 — конденсатор; L1, L2 — линия питающего напряжения

Коэффициент крутящего момента и мощности здесь достигает высоких значений. Стартовый момент ( СМ ) примерно в три раза превышает номинальный крутящий момент ( КМ ) электродвигателя, а максимальный крутящий момент ( КМ max ) достигает удвоенного значения ( КМ ).

После выхода из режима пуска электромотора, рекомендуется поддерживать фазовый токовый сдвиг независимо от уменьшения общего значения ёмкости, поскольку импеданс статора увеличивается.

Конструкции электромоторов с расщеплёнными кольцами

Конструкции однофазных электродвигателей мощностью до 100 Вт нередко выполняются с полюсами статора, расщеплёнными медными кольцами. Каждый полюс такой конструкции имеет специальные выемки под короткозамкнутые проводящие кольца.

Читайте также:  Какое устройство называют тепловым двигателем устройство теплового двигателя

Схема на пуск однофазного электродвигателя с расщеплёнными полюсами: 1 — ротор; 2 — статор; 3 — магнитное поле статора; 4 — магнитное поле кольца; L1, L2 — линия питающего напряжения

Наведённый в теле проводящих колец электрический ток, вызывает искажение вращающегося магнитного поля. Благодаря такому эффекту осуществляется процесс пуска однофазного электродвигателя. Эффективность схем подобного рода невысокая, но вполне достаточная для электродвигателей до 100 Вт мощности.

Пуск электродвигателя на три фазы в однофазном режиме

Трехфазный электродвигатель (230/400 В) допустимо использовать на однофазном питании 220-230В, при условии оснащения стартовым конденсатором и дополнительным конденсатором для рабочего режима.

Следует отметить: такой подход снижает рабочую мощность электродвигателя (снижение порядка 0,7), пусковой момент и тепловой резерв. Как правило, под такую схему пуска подходят только маломощные 4-полюсные электродвигатели мощностью не более 4 кВт.

Видео пример подключения электрического мотора

Ниже представлен видеоролик, где популярно поясняется практически вся «подноготная» электрических моторов с однофазным построением обмоток статора. Кроме того, затрагиваются другие вопросы, тесно связанные с эксплуатацией электрических двигателей в целом. Рекомендуется к просмотру этот видеоматериал, как дополнение к материалу, представленному выше:

Обе инструкции, как текстовая, так и видео-инструкция, непременно помогут правильно запускать, эксплуатировать и обслуживать электрические однофазные (и другие) электромоторы.

Схемы подключения однофазных электродвигателей

Вопрос как подключить однофазный электродвигатель очень часто возникает на практике из-за высокой популярности применения подобных агрегатов для решения различных бытовых задач.

Схема подключения однофазного электродвигателя достаточно проста и требует учета всего одного принципиального момента: для обеспечения его работоспособности необходимо вращающееся магнитное поле. При наличии только однофазной сети переменного тока на момент запуска электродвигателя его приходится формировать искусственно через применение соответствующих схемных решений.

Обмотки электромотора

Укладка обмоток в статоре однофазного электродвигателя

Конструкция любого однофазного электродвигателя предполагает использование как минимум трех катушек. Две из них являются элементов конструкции статора,включены параллельно. Одна из них является рабочей, а вторая выполняет функции пусковой. Их клеммы выведены на корпус двигателя и используются для подключения к сети. Обмотка ротора выполнена короткозамкнутой. К сети подключатся две из них, остальные служат для коммутации.

Для изменения мощности рабочая катушка может формироваться из двух частей, которые включаются последовательно.

Визуально идентифицировать рабочую и пусковую обмотку можно по сечению провода: у первой из них оно заметно больше. Можно замерить сопротивление тестером подключением его к клеммам: у рабочей обмотки его величина будет меньше. Как правило, сопротивления обмоток будет составлять не более нескольких десятков Ом.

Особенности формирования вращающего момента

Магнитное поле, создаваемое катушками электродвигателя, имеет фазовый сдвиг на 90 градусов. Это обычно достигается через конденсатор, который последовательно включается в цепь запуска. Возможные варианты соединения показаны на рисунке ниже.

Варианты создания сдвига фаз

Пусковая катушка может работать постоянно. Допустима также схема, основанная на ее отключении после достижения номинальной частоты вращения ротора. Постоянное подключение пусковой обмотки усложняет конструкцию двигателя, но улучшает его характеристики. На особенностях подключения к сети эти различия не сказываются.

Для упрощения запуска двигателя с рабочим конденсатором, перед подачей на него тока от сети параллельно ему подключают вспомогательную емкость.

Однофазный электромотор позволяет простыми средствами изменить направление вращения вала на противоположное. Для этого производится сдвиг фазы тока, поступающего от сети и протекающего через цепи запуска, меняется на противоположный. Данная процедура реализуется простым изменением порядка включения пусковой обмотки при ее соединении с рабочей обмоткой.

Конденсаторы

Схема подключения однофазных конденсаторных двигателей: а – с рабочей емкостью Ср, б – с рабочей емкостью Ср и пусковой емкостью Сп.

Электродвигатель может комплектоваться двумя разновидностями конденсаторов. Наличие емкости, включаемой последовательно спусковой обмоткой и пропускающей через себя ток для сдвига фазы, является обязательным. Ее значение заимствуется из паспортных данных электродвигателя и дублируется на его шильдике.

При отсутствии конденсатора нужной емкости допустимо применять любой другой с близким номиналом. При слишком сильном отклонении в меньшую сторону двигатель может не начать вращаться без ручной прокрутки его вала, а затем не будет развивать нужную мощность. При значительном превышении емкости начнется сильный нагрев.

Емкость дополнительного пускового компонента выбирается в два-три раза выше по сравнению с основным. Такая величина обеспечивает максимальный стартовый момент.

Для включения пускового элемента может использоваться как обычная кнопка, так и более сложные схемы.

Косвенное включение

Подключение однофазного двигателя

Основным компонентом схемы косвенного включения является магнитный пускатель, который включается в разрыв между выходом силовой сети и электродвигателем.

Силовые контакты этого блока выполнены как нормально разомкнутые. Магнитный пускатель по величине максимального протекающего через него тока относится к одной из семи нормированных групп. Из-за небольшой мощности однофазных электродвигателей обычно достаточно устройства первой группы, максимальное значение коммутируемого тока которого составляет 10 А.

Читайте также:  Газ 31105 двигатель 40621

Управляющая часть катушки предназначена для подключения к сетям с различным напряжением. Наиболее удобным является магнитный пускатель с управлением от 220в переменного тока.

Особенности применения магнитного пускателя

В управляющей части устройства предусмотрено несколько пар контактов, на которых собирается схема релейной автоматики. Один из них всегда является нормально замкнутым, а второй – нормально разомкнутым.

У кнопки «Пуск» рабочим считается нормально разомкнутый контакт, а у кнопки «Стоп» задействован нормально замкнутый элемент.

При выполнении подключения рассматриваемого устройства осуществляются соединения нескольких типов.

Схема подключения однофазного двигателя

Фаза, наряду с входной клеммой, подключается также к входу контакта кнопки «Стоп», а ноль соединяется с входной клеммой катушки, что обеспечивает протекание через нее управляющего тока.

Активный контакт кнопки «Пуск» при работающем двигателе шунтируется аналогичным элементом катушки. Для формирования этой цепи выполняются два дополнительных соединения, схема которых показана на рисунке выше:

  • выход рабочего контакта кнопки «Стоп» параллельно соединяется с контактами выхода кнопки «Пуск» и входа управляющей катушки,
  • выход нормально разомкнутого контакта управляющей катушки параллельно соединяется с ее выходной клеммой и с входом рабочего контакта кнопки «Пуск».

Заключение

Процесс подключения однофазного электромотора к сети 220в не отличается большой сложностью и фактически требует только желания, минимального набора простейших инструментов, наличия схемы соединений и аккуратности в работе. Из расходных материалов нужны только провода. Из-за опасности короткого замыкания и больших величин токов, протекающих через обмотки двигателя, необходимо обязательно выполнять требования техники безопасности и не забывать про старое, но очень действенное правило: «Семь раз отмерь, один раз отрежь».

Как подключить однофазный двигатель

Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Поэтому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В этой статье рассмотрим, как правильно сделать подключение однофазного двигателя.

Асинхронный или коллекторный: как отличить

Вообще, отличить тип двигателя можно по табличке — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

Так выглядит новый однофазный конденсаторный двигатель

Как устроены коллекторные движки

Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

Строение коллекторного двигателя

Недостатки коллекторных двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д.. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

Асинхронные

Асинхронный двигатель имеет статор и ротор, может быть одно и трёхфазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

Строение асинхронного двигателя

Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

Более точно определить бифилярный или конденсаторный двигатель перед вами, можно при помощи измерений сопротивления обмоток. Если сопротивление вспомогательной обмотки больше в два раза (разница может быть еще более значительная), скорее всего, это бифилярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

Читайте также:  Ремонт швейных машин mini jaguar 281

Схемы подключения однофазных асинхронных двигателей

С пусковой обмоткой

Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

  • один с рабочей обмотки — рабочий;
  • с пусковой обмотки;
  • общий.

С этими тремя проводами и работаем дальше — используем для подключения однофазного двигателя.

Со всеми этими

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС

подключение однофазного двигателя

Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифилярного) через кнопку.

Конденсаторный

При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

Схемы подключения однофазного конденсаторного двигателя

Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки, например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

Схема с двумя конденсаторами

Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

Подбор конденсаторов

Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

  • рабочий конденсатор берут из расчета 70-80 мкФ на 1 кВт мощности двигателя;
  • пусковой — в 2-3 раза больше.

Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 вольт берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, для пусковой цепи ищите специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

Изменение направления движения мотора

Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

Как все может выглядеть на практике

Оцените статью