АВТОТРАНСФОРМАТОРНЫЙ ПУСК
Способы пуска асинхронных двигателей
При рассмотрении возможных способов пуска в ход асинхронных двигателей необходимо учитывать следующие основные положения: 1) двигатель должен развивать при пуске достаточно большой пусковой момент, который должен быть больше статического момента сопротивления на валу, чтобы ротор двигателя мог прийти во вращение и достичь номинальной скорости вращения; 2) величина пускового тока должна быть ограничена таким значением, чтобы не происходило повреждения двигателя и нарушения нормального режима работы сети; 3) схема пуска должна быть по возможности простой, а количество и стоимость пусковых устройств — малыми.
Асинхронные двигатели с короткозамкнутым ротором проще по устройству и обслуживанию, а также дешевле и надежнее в работе, чем двигатели с фазным ротором.
Поэтому всюду, где это возможно, применяются двигатели с короткозамкнутым ротором и подавляющее большинство находящихся в эксплуатации асинхронных двигателей являются двигателями с короткозамкнутым ротором.
ПРЯМОЙ ПУСК
Наиболее простым способом пуска двигателя с короткозамкнутым ротором является включение обмотки его статора непосредственно в сеть, на номинальное напряжение обмотки статора Такой пуск называется прямым.
При этом пусковой ток двигателя Іп = (4,0 — 7,0) Ін.
Современные энергетические системы, сети и сетевые трансформаторные подстанции обычно имеют такие мощности, что в подавляющем большинстве случаев возможен прямой пуск асинхронных двигателей. Нередко таким образом осуществляется пуск двигателей мощностью в тысячи киловатт.
Если по условиям падения напряжения в сети прямой пуск двигателя с короткозамкнутым ротором невозможен, применяются различные способы пуска двигателя при пониженном напряжении (,б, в и г). Однако при этом пропорционально квадрату напряжения на зажимах обмотки статора или квадрату пускового тока двигателя понижается также пусковой момент, что является недостатком пуска при пониженном напряжении.
Поэтому эти способы пуска применимы, когда возможен пуск двигателя на холостом ходу или под неполной нагрузкой. Необходимость пуска при пониженном напряжении встречается чаще всего у мощных высоковольтных двигателей.
РЕАКТОРНЫЙ ПУСК
Сначала включается выключатель В1, и двигатель получает питание через трехфазный реактор Р (индуктивную катушку с большим реактивным сопротивлением) ,который ограничивает величину пускового тока. По достижении нормальной скорости вращения включается выключатель В2, который шунтирует реактор, в результате чего на двигатель подается нормальное напряжение сети.
Следовательно, при реакторном пуске начальный пусковой ток за счет падения напряжения на реакторе.
АВТОТРАНСФОРМАТОРНЫЙ ПУСК
Сначала включаются В1 и В2 и на обмотку статора АД через автотрансформатор АТ подается пониженное до напряжение.
После достижения АД установившейся частоты вращения выключатель В2 отключается и на обмотку статора подается напряжение через часть обмотки АТ, который в этом случае работает как реактор. Затем включается В3, и на клеммы обмотки статора подается полное напряжение сети, равное номинальному напряжению обмотки статора.
Таким образом, при автотрансформаторном пуске пусковой момент АД и пусковой ток в сети уменьшаются в одинаковое число раз. При реакторном пуске пусковой ток АД является также пусковым током в сети, а пусковой момент MП уменьшается быстрее пускового тока. Поэтому при одинаковых значениях пускового тока в сети при автотрансформаторном пуске пусковой момент будет больше.
Несмотря на это преимущество автотрансформаторного пуска перед реакторным, достигнутое ценой значительного усложнения и удорожания пусковой аппаратуры, этот пуск применяется реже реакторного в том случае, когда реакторный пуск не обеспечивает необходимого пускового момента.
ПУСК ПЕРЕКЛЮЧЕНИЕМ “ЗВЕЗДА-ТРЕУГОЛЬНИК”
|
Этот способ пуска ранее широко применялся при пуске низковольтных АД, но в связи с увеличением мощности сетей потерял свое прежнее значение, используется сравнительно редко.
Для его применения необходимо, чтобы были выведены все шесть клемм обмотки статора, линейное напряжение сети равно номинальному фазному напряжению обмотки статора.
В первый момент пуска обмотка статора соединена в “звезду”, а при достижении устойчивой частоты вращения схема соединения обмотки изменяется переключателем П на “треугольник”.
При таком способе пуска на фазы обмотки статора подается напряжение уменьшенное в раз по сравнению с номинальным, пусковой момент уменьшается в 3 раза, пусковой ток в фазах уменьшается в раз, а пусковой ток в сети в 3 раза. Таким образом, рассматриваемый способ пуска равноценен автотрансформаторному пуску, однако при пусковых переключениях возникают коммутационные перенапряжения в обмотке статора АД.
Пуск двигателей с короткозамкнутым ротором
Пуск непосредственным включением в сеть(рис. 15.3). Этот способ пуска, отличаясь простотой, имеет существенный недостаток: в момент подключения двигателя к сети в обмотке статора возникает большой пусковой ток, в 5—7 раз превышающий номинальный ток двигателя. При небольшой инерционности исполнительного механизма частота вращения двигателя быстро достигает установившегося значения и пусковой ток также быстро спадает, не вызывая перегрева обмотки статора. Но такой значительный бросок тока в питающей сети может вызвать в ней заметное падение напряжения. Однако этот способ пуска благодаря своей простоте получил наибольшее применение для двигателей
Рис. 15.3. Схема непосредственного включения в сеть (а) и графики изменения тока и момента при пуске (б) асинхронного двигателя с короткозамкнутым ротором
мощностью до 38—50 кВт и более (при достаточном сечении жил токоподводящего кабеля). При необходимости уменьшения пускового тока двигателя применяют какой-либо из способов пуска короткозамкнутых двигателей при пониженном напряжении.
Пуск при пониженном напряжении.В соответствии с (15.1) пусковой ток двигателя пропорционален подведенному напряжению U1, уменьшение которого вызывает соответствующее уменьшение пускового тока. Существует несколько способов понижения подводимого к двигателю напряжения. Рассмотрим некоторые из них.
Для асинхронных двигателей, работающих при соединении обмоток статора треугольником, можно применить пуск переключением обмотки статора со звезды на треугольник (рис. 15.4, а). В момент подключения двигателя к сети переключатель ставят в положение «звезда», при котором обмотка статора оказывается соединенной в звезду. При этом фазное напряжение на статоре понижается в раз. Во столько же раз уменьшается и ток в фазных обмотках двигателя (рис. 15.4, б). Кроме того, при соединении обмоток звездой линейный ток равен фазному, в то время как при соединении этих же обмоток треугольником линейный ток больше фазного в
раз. Следовательно, переключив обмотки статора звездой, мы добиваемся уменьшения линейного тока в (
) 2 = 3 раза.
Рис. 15.4. Схема включения (а) и графики изменения момента и тока (фазного) при пуске (б) асинхронного двигателя с короткозамкнутым ротором переключением обмотки статора со звезды на треугольник
После того как ротор двигателя разгонится до частоты вращения, близкой к установившейся, переключатель быстро переводят в положение «треугольник» и фазные обмотки двигателя оказываются под номинальным напряжением. Возникший при этом бросок тока до значения I / пΔ является незначительным.
Рассмотренный способ пуска имеет существенный недостаток — уменьшение фазного напряжения в раз сопровождается уменьшением пускового момента в три раза, так как, согласно (13.19), пусковой момент асинхронного двигателя прямо пропорционален квадрату напряжения U1. Такое значительное уменьшение пускового момента не позволяет применять этот способ пуска для двигателей, включаемых в сеть при значительной нагрузке на валу.
Описанный способ понижения напряжения при пуске применим лишь для двигателей, работающих при соединении обмотки статора треугольником. Более универсальным является способ с понижением подводимого к двигателю напряжения посредством реакторов (реактивных катушек — дросселей). Порядок включения двигателя в этом случае следующий (рис. 15.5, а). При разомкнутом рубильнике 2 включают рубильник 7. При этом ток из сети поступает в обмотку статора через реакторы Р, на которых происходит падение напряжения j хр (где хр — индуктивное сопротивление реактора, Ом). В результате на обмотку статора подается пониженное напряжение
После разгона ротора двигателя включают рубильник 2 и подводимое к обмотке статора напряжение оказывается номинальным.
Недостаток этого способа пуска состоит в том, что уменьшение напряжения в U / 1/ U1ном
Рис. 15.5. Схемы реакторного (а) и автотрансформаторного (б) способов пуска асинхронных двигателей с короткозамкнутым ротором
раз сопровождается уменьшением пускового момента Мп в (U / 1/ U1ном) 2 раз.
При пуске двигателя через понижающий автотрансформатор (рис. 15.5, б) вначале замыкают рубильник 1, соединяющий обмотки автотрансформатора звездой, а затем включают рубильник 2 и двигатель оказывается подключенным на пониженное напряжение U / 1 . При этом пусковой ток двигателя, измеренный на выходе автотрансформатора, уменьшается в КА раз, где КА — коэффициент трансформации автотрансформатора. Что же касается тока в питающей двигатель сети, т. е. тока на входе автотрансформатора, то он уменьшается в К 2 А раз по сравнению с пусковым током при непосредственном включении двигателя в сеть. Дело в том, что в понижающем автотрансформаторе первичный ток меньше вторичного в КА раз и поэтому уменьшение пускового тока при автотрансформаторном пуске составляет КАКА = К 2 А раз. Например, если кратность пускового тока асинхронного двигателя при непосредственном его включении в сеть составляет Iп/I1ном = 6 , а напряжение сети 380 В, то при автотрансформаторном пуске с понижением напряжения до 220 В кратность пускового тока в сети I / п/ I1ном = 6/ (380/220) 2 = 2 .
После первоначального разгона ротора двигателя рубильник 1 размыкают и автотрансформатор превращается в реактор. При этом напряжение на выводах обмотки статора несколько повышается, но все же остается меньше номинального. Включением рубильника 3 на двигатель подается полное напряжение сети. Таким образом, автотрансформаторный пуск проходит тремя ступенями: на первой ступени к двигателю подводится напряжение U1 = (0,50÷0,60)U1ном, на второй — U1 = (0,70÷0,80)U1ном и, наконец, на третьей ступени к двигателю подводится номинальное напряжение U1ном.
Как и предыдущие способы пуска при пониженном напряжении, автотрансформаторный способ пуска сопровождается уменьшением пускового момента, так как значение последнего прямо пропорционально квадрату напряжения. С точки зрения уменьшения пускового тока автотрансформаторный способ пуска лучше реакторного, так как при реакторном пуске пусковой ток в питающей сети уменьшается в U / 1/ U1ном раз, а при автотрансформаторном — в (U / 1/ U1ном) 2 раз. Но некоторая сложность пусковой операции и повышенная стоимость пусковой аппаратуры (понижающий автотрансформатор и переключающая аппаратура) несколько ограничивают применение этого способа пуска асинхронных двигателей.
Пуск электродвигателя через автотрансформатор
Запуск трёхфазного электродвигателя осуществляется с помощью автотрансформатора, который соединяется последовательно с электродвигателем во время пуска.
Автотрансформатор обеспечивает пуск при низком напряжении, которое понижается приблизительно на 50-80% от полного напряжения в электрической цепи. В зависимости от заданных параметров напряжение может снижается в один или два этапа. Понижение напряжения, подаваемого на электродвигатель одновременно, приведёт к уменьшению пускового тока и вращающего пускового момента. Если в определённый момент времени к электродвигателю не подаётся питание, он не потеряет скорость вращения, как и в случае с пуском переключением «звезда – треугольник». Время переключения от пониженного напряжения к полному напряжению можно корректировать.
Помимо уменьшения пускового момента, способ пуска через автотрансформатор имеет один недостаток. Как только электродвигатель начинает работать, он переключается на сетевое напряжение , что вызывает скачок тока. Вращающий момент зависит от напряжения подаваемого на двигатель. Значение пускового момента пропорциональны квадрату напряжения.
Рассмотрим более подробно пуск трёхфазного электродвигателя через автотрансформатор на схеме.
При автотранспортном пуске вначале замыкают рубильник 1, соединяющий звездой обмотки автотрансформатора. Затем замыкают рубильник 2, и двигатель оказывается включенным на пониженное напряжение U’1. При этом пусковой ток двигателя, измеренный на выходе автотрансформатора, уменьшается в Ка раз, где Ка – коэффициент трансформации автотрансформатора. Ток, измеренный на входе автотрансформатора, уменьшается в К2а раз по сравнению с пусковым током при непосредственном включении двигателя в сеть. Дело в том, что в понижающем автотрансформаторе первичный ток в Ка раз меньше вторичного, а поэтому уменьшение пускового тока при автотрансформаторном пуске составляет Ка х Ка = К2а раз.
После того как ротор двигателя придет во вращение, рубильник 1 размыкают, и автотрансформатор превращается в реактивную катушку. При этом напряжение на выводах статорной обмотки несколько повышается. Включением рубильника 3 на зажимы двигателя подается полное напряжение сети U1н. Таким образом, автотрансформаторный пуск происходит тремя ступенями: на первой ступени к двигателю подводят напряжение, равное 50-70% от номинального; на второй ступени, где трансформатор служит реактором, напряжение составляет 70-80% от номинального. Так как применение автотрансформатора дает уменьшение пускового тока в К2а раз
I’п = Iп / К2а,
то мощность, на которую должен быть рассчитан пусковой автотрансформатор,
Sa = 3U1н Iп (1 / К2а),
где U1н – номинальное (фазное) напряжение статорной обмотки;
Iп — пусковой ток двигателя при пуске непосредственным включением в сеть.
Автотрансформаторный способ пуска, как и другие способы пуска асинхронных двигателей, основанные на уменьшении подводимого напряжения, сопровождается уменьшением пускового момента, так как величина последнего прямо пропорциональна квадрату напряжения. С точки зрения пусковых токов и пусковых моментов, автотрансформаторный способ пуска выгоднее реакторного, так как при одинаковом уменьшении напряжения пусковой ток при реакторном способе пуска уменьшается в U’1 / U1н раз, а при автотрансформаторном способе пуска – в (U’1 / U1н)2 раз. Но сложность пусковой операции и высокая стоимость аппаратуры несколько ограничивают применение автотрансформаторного способа пуска асинхронных двигателей.