AutoSoftos.com
AutoSoftos.com
Литература по ремонту автомобилей, Програмы для диагностики авто
Всегда свежий софт и автомобильная литература
Доллар — 64.64
Евро — 71.70
Двигатель ВАЗ-2111 с системой распределенного впрыска топлива (контроллер М1.5.4.) Скачать
- Разместил: klays067;
- Прочитано: 3 173;
- Дата: 5-03-2014, 19:38;
Двигатель ВАЗ-2111 с системой распределенного впрыска топлива (контроллер М1.5.4.) — Руководство разработано специалистами департамента развития АО АвтоВАЗ. В нем описывается устройство и ремонт элементов электронной системы управления двигателем ВАЗ-2111 (1,5 л) с распределенным впрыском топлива, который устанавливается на автомобилях ВАЗ-21083, ВАЗ-21093, ВАЗ-21099, а также ВАЗ-2111 иВАЗ-21102.
Руководство предназначено для инженерно-технических работников предприятий по обслуживанию и ремонту автомобилей и индивидуальных владельцев.
Название: Двигатель ВАЗ-2111 с системой распределенного впрыска топлива (контроллер М1.5.4.)
Автор: Ред. В. И. Коноплев
Издательство: ЗАО КЖИ «За рулем»
Год: 2000
Страниц: 100
Формат: DJVU
Размер: 6,27 МБ
ISBN: 5-85907-168-X
Качество: Отличное
Язык: Русский
ЭЛЕКТРОННАЯ СИСТЕМА УПРАВЛЕНИЯ ДВИГАТЕЛЕМ (система впрыска топлива)
На автомобилях ВАЗ–2110, ВАЗ–2111 и ВАЗ–2112 в вариантном исполнении применяется электронная система управления двигателем, т.е. система распределенного впрыска топлива. Эта система применяется на двигателях 2111 и 2112. Распределенным впрыск называется потому, что для каждого цилиндра топливо впрыскивается отдельной форсункой. Система впрыска топлива позволяет снизить токсичность отработавших газов при улучшении ездовых качеств автомобиля.
Существуют системы распределенного впрыска с обратной связью и без нее. Причем обе системы могут быть с импортными комплектующими или отечественными. Контроллеры (электронные блоки управления) тоже могут устанавливаться разных типов. Все эти системы имеют свои особенности в устройстве, диагностике и в ремонте, которые подробно описаны в соответствующих отдельных Руководствах по ремонту конкретных систем впрыска топлива с определенным контроллером.
В настоящей главе дается только краткое описание общих принципов устройства, работы и диагностики систем впрыска топлива на примере системы с контроллером «Январь–4».
Система с обратной связью применяется, в основном, на экспортных автомобилях. У нее в системе выпуска устанавливается нейтрализатор и датчик кислорода, который и обеспечивает обратную связь. Датчик отслеживает концентрацию кислорода в отработавших газах, а контроллер по его сигналам поддерживает такое соотношение воздух/топливо, которое обеспечивает наиболее эффективную работу нейтрализатора.
В системе впрыска без обратной связи не устанавливаются нейтрализатор и датчик кислорода, а для регулировки концентрации СО в отработавших газах служит СО-потенциометр. В этой системе не применяется также система улавливания паров бензина. Возможен вариант системы впрыска и без СО-потенциометра, тогда содержание СО регулируется с помощью диагностического прибора.
Существует еще система последовательного распределенного впрыска топлива или фазированного впрыска. Она применяется с двигателем 2112. Здесь дополнительно устанавливается датчик фаз, определяющий момент конца такта сжатия в 1-м цилиндре, а топливо подается форсунками по цилиндрам в последовательности, соответствующей порядку зажигания в цилиндрах (1–3–4–2).
1. Прежде чем снимать любые узлы системы управления впрыском, отсоедините провод от клеммы «минус» аккумуляторной батареи.
2. Не пускайте двигатель, если наконечники проводов на аккумуляторной батарее плохо затянуты.
3. Никогда не отсоединяйте аккумуляторную батарею от бортовой сети автомобиля при работающем двигателе.
4. При зарядке аккумуляторной батареи отсоединяйте ее от бортовой сети автомобиля.
5. Не подвергайте контроллер температуре выше 65 С в рабочем состоянии и выше 80 С в нерабочем (например, в сушильной камере). Надо снимать контроллер с автомобиля, если эта температура будет превышена.
6. Не отсоединяйте от контроллера и не присоединяйте к нему разъемы жгута проводов при включенном зажигании.
7. Перед выполнением электродуговой сварки на автомобиле, отсоединяйте провода от аккумуляторной батареи и разъемы проводов от контроллера.
8. Все измерения напряжения выполняйте цифровым вольтметром с внутренним сопротивлением не менее 10 МОм.
9. Электронные узлы, применяемые в системе впрыска, рассчитаны на очень малое напряжение и поэтому легко могут быть повреждены электростатическим разрядом. Чтобы не допустить повреждений контроллера электростатическим разрядом:
– не прикасайтесь руками к штекерам контроллера или к электронным компонентам на его платах;
– при работе с ППЗУ контроллера не дотрагивайтесь до выводов микросхемы.
Устройство и работа
Токсичными компонентами отработавших газов являются углеводороды (несгоревшее топливо), окись углерода и окись азота. Для преобразования этих соединений в нетоксичные служит трехкомпонентный каталитический нейтрализатор, установленный в системе выпуска сразу за приемной трубой глушителей. Нейтрализатор применяется только в системе впрыска топлива с обратной связью.
Рис. 9–21. Нейтрализатор: 1 – керамический блок с катализаторами
В нейтрализаторе (рис. 9–21) находятся керамические элементы с микроканалами, на поверхности которых нанесены катализаторы: два окислительных и один восстановительный. Окислительные катализаторы (платина и палладий) способствуют преобразованию углеводородов в водяной пар, а окиси углерода – в безвредную двуокись углерода. Восстановительный катализатор (родий) ускоряет химическую реакцию восстановления оксидов азота и превращения их в безвредный азот.
Для эффективной нейтрализации токсичных компонентов и наиболее полного сгорания воздушно-топливной смеси необходимо, чтобы на 14,6–14,7 частей воздуха приходилась 1 часть топлива.
Такая точность дозирования обеспечивается электронной системой впрыска топлива, которая непрерывно корректирует подачу топлива в зависимости от условий работы двигателя и сигнала от датчика концентрации кислорода в отработавших газах.
Не допускается работа двигателя с нейтрализатором на этилированном бензине. Это приведет к быстрому выходу из строя нейтрализатора и датчика концентрации кислорода.
Рис. 9–22. Схема системы впрыска топлива: 1 – воздушный фильтр; 2 – датчик массового расхода воздуха; 3 – шланг впускной трубы; 4 – шланг подвода охлаждающей жидкости; 5 – дроссельный патрубок; 6 – регулятор холостого хода; 7 – датчик положения дроссельной заслонки; 8 – канал подогрева системы холостого хода; 9 – ресивер; 10 – шланг регулятора давления; 11 – контроллер; 12 – реле включения электробензонасоса; 13 – топливный фильтр; 14 – топливный бак; 15 – электробензонасос с датчиком уровня топлива; 16 – сливная магистраль; 17 – подающая магистраль; 18 – регулятор давления;
19 – впускная труба; 20 – рампа форсунок; 21 – форсунка; 22 – датчик скорости; 23 – датчик концентрации кислорода; 24 – газоприемник приемной трубы глушителей; 25 – коробка передач; 26 – головка цилиндров; 27 – выпускной патрубок системы охлаждения; 28 – датчик температуры охлаждающей жидкости; А – к подводящей трубе насоса охлаждающей жидкости
Контроллер 11 (рис. 9–22) (электронный блок управления), расположенный под консолью панели приборов, является управляющим центром системы впрыска топлива. Он непрерывно обрабатывает информацию от различных датчиков и управляет системами, влияющими на токсичность отработавших газов и на эксплуатационные показатели автомобиля.
В контроллер поступает следующая информация:
– о положении и частоте вращения коленчатого вала;
– о массовом расходе воздуха двигателем;
– о температуре охлаждающей жидкости;
– о положении дроссельной заслонки;
– о содержании кислорода в отработавших газах (в системе с обратной связью);
– о наличии детонации в двигателе;
– о напряжении в бортовой сети автомобиля;
– о скорости автомобиля;
– о положении распределительного вала (в системе с последовательным распределенным впрыском топлива);
– о запросе на включение кондиционера (если он установлен на автомобиле).
На основе полученной информации контроллер управляет следующими системами и приборами:
– топливоподачей (форсунками и электробензонасосом);
– регулятором холостого хода;
– адсорбером системы улавливания паров бензина (если эта система есть на автомобиле);
– вентилятором системы охлаждения двигателя;
– муфтой компрессора кондиционера (если он есть на автомобиле);
Контроллер включает выходные цепи (форсунки, различные реле и т.д.) путем замыкания их на массу через выходные транзисторы контроллера. Единственное исключение – цепь реле топливного насоса. Только на обмотку этого реле контроллер подает напряжение +12 В.
Контроллер имеет встроенную систему диагностики. Он может распознавать неполадки в работе системы, предупреждая о них водителя через контрольную лампу «CHECK ENGINE». Кроме того, он хранит диагностические коды, указывающие области неисправности, чтобы помочь специалистам в проведении ремонта.
Память . В контроллере имеется три вида памяти: оперативное запоминающее устройство (ОЗУ), однократно программируемое постоянное запоминающее устройство (ППЗУ) и электрически программируемое запоминающее устройство (ЭПЗУ).
Оперативное запоминающее устройство – это «блокнот» контроллера. Микропроцессор контроллера использует его для временного хранения измеряемых параметров для расчетов и для промежуточной информации. Микропроцессор может по мере необходимости вносить в него данные или считывать их.
Микросхема ОЗУ смонтирована на печатной плате контроллера. Эта память является энергозависимой и требует бесперебойного питания для сохранения. При прекращении подачи питания содержащиеся в ОЗУ диагностические коды неисправностей и расчетные данные стираются.
Программируемое постоянное запоминающее устройство. В ППЗУ находится общая программа, в которой содержится последовательность рабочих команд (алгоритмы управления) и различная калибровочная информация. Эта информация представляет собой данные управления впрыском, зажиганием, холостым ходом и т.п., которые зависят от массы автомобиля, типа и мощности двигателя, от передаточных отношений трансмиссии и других факторов. ППЗУ называют еще запоминающим устройством калибровок.
Рис. 9–23. Контроллер: 1 – программируемое постоянное запоминающее устройство (ППЗУ)
Содержимое ППЗУ не может быть изменено после программирования. Эта память не нуждается в питании для сохранения записанной в ней информации, которая не стирается при отключении питания, т.е. эта память является энергонезависимой. ППЗУ устанавливается в панельке на плате контроллера (рис. 9–23) и может выниматься из контроллера и заменяться.
ППЗУ индивидуально для каждой комплектации автомобиля, хотя на разных моделях автомобилей может быть применен один и тот же унифицированный контроллер. Поэтому при замене ППЗУ важно установить правильный номер модели и комплектации автомобиля. А при замене дефектного контроллера необходимо оставлять прежнее ППЗУ (если оно исправно).
Электрически программируемое запоминающее устройство используется для временного хранения кодов-паролей противоугонной системы автомобиля (иммобилизатора). Коды-пароли, принимаемые контроллером от блока управления иммобилизатором (если он имеется на автомобиле), сравниваются с хранимыми в ЭПЗУ и при этом разрешается или запрещается пуск двигателя. Эта память является энергонезависимой и может храниться без подачи питания на контроллер.
Датчик температуры охлаждающей жидкости представляет собой термистор (резистор, сопротивление которого изменяется от температуры). Датчик завернут в выпускной патрубок охлаждающей жидкости на головке цилиндров. При низкой температуре датчик имеет высокое сопротивление (при –40 оС – 100 кОм), а при высокой температуре – низкое (при 100 оС – 177 Ом).
Температуру охлаждающей жидкости контроллер рассчитывает по падению напряжения на датчике. Падение напряжения высокое на холодном двигателе и низкое на прогретом. Температура охлаждающей жидкости влияет на большинство характеристик, которыми управляет контроллер.
Рис. 9–24. Расположение датчика детонации на двигателе: 1 – датчик детонации
Датчик детонации заворачивается в верхнюю часть блока цилиндров (рис. 9–24) и улавливает аномальные вибрации (детонационные удары) в двигателе.
Чувствительным элементом датчика является пьезокристаллическая пластинка. При детонации на выходе датчика генерируются импульсы напряжения, которые увеличиваются с возрастанием интенсивности детонационных ударов. Контроллер по сигналу датчика регулирует опережение зажигания для устранения детонационных вспышек топлива.
Датчик концентрации кислорода применяется в системе впрыска с обратной связью и устанавливается на приемной трубе глушителей. Кислород, содержащийся в отработавших газах, реагирует с датчиком кислорода, создавая разность потенциалов на выходе датчика. Она изменяется приблизительно от 0,1 В (высокое содержание кислорода – бедная смесь) до 0,9 В (мало кислорода – богатая смесь).
Для нормальной работы датчик должен иметь температуру не ниже 360 оС. Поэтому для быстрого прогрева после пуска двигателя в датчик встроен нагревательный элемент.
Отслеживая выходное напряжение датчика концентрации кислорода, контроллер определяет, какую команду по корректировке состава рабочей смеси подавать на форсунки. Если смесь бедная (низкая разность потенциалов на выходе датчика), то дается команда на обогащение смеси. Если смесь богатая (высокая разность потенциалов) – дается команда на обеднение смеси.
Датчик массового расхода воздуха расположен между воздушным фильтром и шлангом впускной трубы. В нем находятся температурные датчики и нагревательный резистор. Проходящий воздух охлаждает один из датчиков, а электронный модуль датчика преобразует эту разность температур датчиков в выходной сигнал для контроллера.
В разных вариантах систем впрыска топлива могут применяться датчики массового расхода воздуха двух типов. Они отличаются по устройству и по характеру выдаваемого сигнала, который может быть частотным или аналоговым. В первом случае в зависимости от расхода воздуха меняется частота сигнала, а во втором случае – напряжение.
Контроллер использует информацию от датчика массового расхода воздуха для определения длительности импульса открытия форсунок.
Рис. 9–25. СО-потенциометр
СО-потенциометр (рис. 9–25) установлен в моторном отсеке на стенке коробки воздухопритока и представляет собой переменный резистор. Он выдает в контроллер сигнал, который используется для регулировки состава топливо-воздушной смеси с целью получения нормированного уровня концентрации окиси углерода (СО) в отработавших газах на холостом ходу. СО-потенциометр подобен винту качества смеси в карбюраторах. Регулировка содержания СО с помощью СО-потенциометра выполняется только на станции технического обслуживания с применением газоанализатора.
Датчик скорости автомобиля устанавливается на коробке передач между приводом спидометра и наконечником гибкого вала привода спидометра. Принцип действия датчика основан на эффекте Холла. Датчик выдает на контроллер прямоугольные импульсы напряжения с частотой, пропорциональной скорости вращения ведущих колес.
Датчик положения дроссельной заслонки установлен сбоку на дроссельном патрубке и связан с осью дроссельной заслонки.
Датчик представляет собой потенциометр, на один конец которого подается плюс напряжения питания (5 В), а другой конец соединен с массой. С третьего вывода потенциометра (от ползунка) идет выходной сигнал к контроллеру.
Когда дроссельная заслонка поворачивается (от воздействия на педаль управления), изменяется напряжение на выходе датчика. При закрытой дроссельной заслонке оно ниже 0,7 В. Когда заслонка открывается, напряжение на выходе датчика растет и при полностью открытой заслонке должно быть более 4 В.
Отслеживая выходное напряжение датчика контроллер корректирует подачу топлива в зависимости от угла открытия дроссельной заслонки (т.е. по желанию водителя).
Датчик положения дроссельной заслонки не требует никакой регулировки, т.к. контроллер воспринимает холостой ход (т.е. полное закрытие дроссельной заслонки) как нулевую отметку.
Датчик положения коленчатого вала – индуктивного типа, предназначен для синхронизации работы контроллера с верхней мертвой точкой поршней 1-го и 4-го цилиндров и угловым положением коленчатого вала.
Рис. 9–26. Осциллограмма импульсов напряжения датчика положения коленчатого вала:
а – угловые импульсы; б – опорный импульс
Датчик установлен на крышке масляного насоса напротив задающего диска на шкиве привода генератора. Задающий диск представляет собой зубчатое колесо с 58 равноудаленными (6о) впадинами. При таком шаге на диске помещается 60 зубьев, но два зуба срезаны для создания импульса «в» (рис. 9–26) синхронизации («Опорного» импульса), который необходим для согласования работы контроллера с ВМТ поршней в 1-ом и 4-ом цилиндрах.
При вращении коленчатого вала зубья изменяют магнитное поле датчика, наводя импульсы напряжения переменного тока. Установочный зазор между сердечником датчика и зубом диска должен находиться в пределах (1±0,2) мм.
Контроллер по сигналам датчика определяет частоту вращения коленчатого вала и выдает импульсы на форсунки.
Датчик фаз применяется в системе с последовательным впрыском топлива и устанавливается с левой передней стороны головки цилиндров. Принцип его действия основан на эффекте Холла. В пазу датчика находится обод стального диска с прорезью. Этот диск закреплен на шкиве впускного распределительного вала. Когда прорезь диска проходит через паз датчика фаз, он выдает на контроллер отрицательный импульс, соответствующий положению поршня 1-го цилиндра в ВМТ в конце такта сжатия.
Сигнал запроса на включение кондиционера . Если на автомобиле установлен кондиционер, то сигнал поступает от выключателя кондиционера на панели приборов. В данном случае контроллер получает информацию о том, что водитель желает включить кондиционер.
Получив такой сигнал, контроллер сначала подстраивает регулятор холостого хода, чтобы компенсировать дополнительную нагрузку на двигатель от компрессора кондиционера, а затем включает реле, управляющее работой компрессора кондиционера.
Воздушный фильтр установлен в передней части моторного отсека на резиновых фиксаторах. Фильтрующий элемент – бумажный, с большой площадью фильтрующей поверхности. При замене фильтрующего элемента его необходимо устанавливать так, чтобы гофры были расположены параллельно осевой линии автомобиля.
Рис. 9–27. Дроссельный патрубок: 1 – патрубок подвода охлаждающей жидкости; 2 – патрубок системы вентиляции картера на холостом ходу;
3 – патрубок для отвода охлаждающей жидкости; 4 – датчик положения дроссельной заслонки;
5 – регулятор холостого хода; 6 – штуцер для продувки адсорбера; 7 – заглушка
Дроссельный патрубок (рис. 9–27) закреплен на ресивере. Он дозирует количество воздуха, поступающего во впускную трубу. Поступлением воздуха в двигатель управляет дроссельная заслонка, соединенная с приводом педали акселератора.
В состав дроссельного патрубка входят датчик 4 положения дроссельной заслонки и регулятор 5 холостого хода. В проточной части дроссельного патрубка (перед дроссельной заслонкой и за ней) находятся отверстия отбора разрежения, необходимые для работы системы вентиляции картера и адсорбера системы улавливания паров бензина. Если последняя система не применяется, то штуцер для продувки адсорбера глушится резиновой заглушкой 7.
Регулятор 5 холостого хода регулирует частоту вращения коленчатого вала на режиме холостого хода, управляя количеством подаваемого воздуха в обход закрытой дроссельной заслонки. Он состоит из двухполюсного шагового электродвигателя и соединенного с ним конусного клапана. Клапан выдвигается или убирается по сигналам контроллера.
Когда игла регулятора полностью выдвинута (что соответствует 0 шагов), клапан полностью перекрывает проход воздуха. Когда игла вдвигается, то обеспечивается расход воздуха, пропорциональный количеству шагов отхода иглы от седла.
Рис. 9–28. Система подачи топлива: 1 – пробка штуцера для контроля давления топлива; 2 – рампа форсунок; 3 – скоба крепления топливных трубок; 4 – регулятор давления топлива; 5 – электробензонасос; 6 – топливный фильтр; 7 – сливной топливопровод; 8 – подающий топливопровод; 9 – форсунки
Система подачи топлива включает в себя электробензонасос 5 (рис. 9–28), топливный фильтр 6, топливопроводы и рампу 2 форсунок в сборе с форсунками 9 и регулятором 4 давления топлива.
Электробензонасос – двухступенчатый, роторного типа, неразборный, установлен в топливном баке. Он обеспечивает подачу топлива под давлением более 284 кПа.
Электробензонасос расположен непосредственно в топливном баке, что снижает возможность образования паровых пробок, т.к. топливо подается под давлением, а не под действием разрежения.
Топливный фильтр встроен в подающую магистраль между электробензонасосом и рампой форсунок, и установлен под полом кузова за топливным баком. Фильтр – неразборный, имеет стальной корпус с бумажным фильтрующим элементом.
Рампа 2 форсунок представляет собой полую планку с установленными на ней форсунками и регулятором давления топлива. Рампа форсунок закреплена двумя болтами на впускной трубе. С левой стороны (на рисунке) на рампе форсунок находится штуцер для контроля давления топлива, закрытый резьбовой пробкой 1.
Форсунки 9 крепятся к рампе, от которой к ним подается топливо, а своими распылителями входят в отверстия впускной трубы. В отверстиях рампы и впускной трубы форсунки уплотняются резиновыми уплотнительными кольцами.
Форсунка представляет собой электромагнитный клапан. Когда на нее от контроллера поступает импульс напряжения, то клапан открывается и топливо через распылитель тонко распыленной струей под давлением впрыскивается во впускную трубу на впускной клапан. Здесь топливо испаряется, соприкасаясь с нагретыми деталями, и в парообразном состоянии попадает в камеру сгорания. После прекращения подачи электрического импульса подпружиненный клапан форсунки перекрывает подачу топлива.
Регулятор 4 давления топлива установлен на рампе форсунок и предназначен для поддержания постоянного перепада давления между давлением воздуха во впускной трубе и давлением топлива в рампе.
Рис. 9–29. Регулятор давления топлива:
1 – корпус; 2 – крышка; 3 – патрубок для вакуумного шланга; 4 – диафрагма; 5 – клапан; А – топливная полость; Б – вакуумная полость
Регулятор состоит из клапана 5 (рис. 9–29) с диафрагмой 4, поджатого пружиной к седлу в корпусе регулятора. На работающем двигателе регулятор поддерживает давление в рампе форсунок в пределах 284–325 кПа.
На диафрагму регулятора с одной стороны действует давление топлива, а с другой – давление (разрежение) во впускной трубе. При уменьшении давления во впускной трубе (дроссельная заслонка закрывается) клапан регулятора открывается при меньшем давлении топлива, перепуская избыточное топливо по сливной магистрали обратно в бак. Давление топлива в рампе понижается. При увеличении давления во впускной трубе (при открывании дроссельной заслонки) клапан регулятора открывается уже при большем давлении топлива и давление топлива в рампе повышается.
Рис. 9–30. Схема системы зажигания: 1 – аккумуляторная батарея; 2 – выключатель зажигания;
3 – реле зажигания; 4 – свечи зажигания; 5 – модуль зажигания; 6 – контроллер; 7 – датчик положения коленчатого вала; 8 – задающий диск;
А – устройства согласования
В системе зажигания не используются традиционные распределитель и катушка зажигания. Здесь применяется модуль 5 (рис. 9–30) зажигания, состоящий из двух катушек зажигания и управляющей электроники высокой энергии. Система зажигания не имеет подвижных деталей и поэтому не требует обслуживания. Она также не имеет регулировок (в том числе и угла опережения зажигания), т.к. управление зажиганием осуществляет контроллер.
В системе зажигания применяется метод распределения искры, называемый методом «холостой искры». Цилиндры двигателя объединены в пары 1–4 и 2–3 и искрообразование происходит одновременно в двух цилиндрах: в цилиндре, в котором заканчивается такт сжатия (рабочая искра), и в цилиндре, в котором происходит такт выпуска (холостая искра). В связи с постоянным направлением тока в обмотках катушек зажигания ток искрообразования у одной свечи всегда протекает с центрального электрода на боковой, а у второй – с бокового на центральный. Свечи применяются типа А17ДВРМ (для 8-клапанных двигателей) или АУ17ДВРМ (для 16-клапанных двигателей, с уменьшенным до 16 мм размером под ключ). Зазор между электродами свечей составляет 1,0–1,15 мм.
Управление зажиганием в системе осуществляется с помощью контроллера. Датчик положения коленчатого вала подает в контроллер опорный сигнал, на основе которого контроллер делает расчет последовательности срабатывания катушек в модуле зажигания. Для точного управления зажиганием контроллер использует следующую информацию:
– частота вращения коленчатого вала;
– нагрузка двигателя (массовый расход воздуха);
– температура охлаждающей жидкости;
– положение коленчатого вала;
Система улавливания паров бензина
Эта система применяется в системе впрыска с обратной связью. В системе применен метод улавливания паров угольным адсорбером. Он установлен в моторном отсеке и соединен трубопроводами с топливным баком и дроссельным патрубком. На крышке адсорбера расположен электромагнитный клапан, который по сигналам контроллера переключает режимы работы системы.
Когда двигатель не работает, электромагнитный клапан закрыт и пары бензина из топливного бака по трубопроводу идут к адсорберу, где они поглощаются гранулированным активированным углем. При работающем двигателе адсорбер продувается воздухом и пары отсасываются к дроссельному патрубку, а затем во впускную трубу для сжигания в ходе рабочего процесса.
Контроллер управляет продувкой адсорбера, включая электромагнитный клапан, расположенный на крышке адсорбера. При подаче на клапан напряжения, он открывается, выпуская пары во впускную трубу. Управление клапаном осуществляется методом широтно-импульсной модуляции. Клапан включается и выключается с частотой 16 раз в секунду (16 Гц). Чем выше расход воздуха, тем больше длительность импульсов включения клапана.
Контроллер включает клапан продувки адсорбера при выполнении всех следующих условий:
– температура охлаждающей жидкости выше 75 оС;
– система управления топливоподачей работает в режиме замкнутого цикла (с обратной связью);
– скорость автомобиля превышает 10 км/ч. После включения клапана критерий скорости меняется. Клапан отключится только при снижении скорости до 7 км/ч;
– открытие дроссельной заслонки превышает 4%. Этот фактор в дальнейшем не играет значения, если он не превышает 99%. При полном открытии дроссельной заслонки контроллер отключает клапан продувки адсорбера.
Работа системы впрыска
Количество топлива, подаваемого форсунками, регулируется электрическим импульсным сигналом от контроллера (электронного блока управления). Контроллер отслеживает данные о состоянии двигателя, рассчитывает потребность в топливе и определяет необходимую длительность подачи топлива форсунками (длительность импульса). Для увеличения количества подаваемого топлива длительность импульса увеличивается, а для уменьшения подачи топлива – сокращается.
Контроллер обладает способностью оценивать результаты своих расчетов и команд, а также запоминать опыт недавней работы и действовать в соответствии с ним. «Самообучение» контроллера является непрерывным процессом, продолжающимся в течение всего срока эксплуатации автомобиля.
Топливо подается по одному из двух разных методов: синхронному, т.е. при определенном положении коленчатого вала, или асинхронному, т.е. независимо или без синхронизации с вращением коленчатого вала. Синхронный впрыск топлива – преимущественно применяемый метод. Асинхронный впрыск топлива применяется, в основном, на режиме пуска двигателя.
Форсунки включаются попарно и поочередно: сначала форсунки 1 и 4 цилиндров, а через 180о поворота коленчатого вала – форсунки 2 и 3 цилиндров и т.д. Таким образом, каждая форсунка включается один раз за оборот коленчатого вала, т.е. два раза за полный рабочий цикл двигателя.
Независимо от метода впрыска подача топлива определяется состоянием двигателя, т.е. режимом его работы. Эти режимы обеспечиваются контроллером и описаны ниже.
Первоначальный впрыск топлива.
Когда коленчатый вал двигателя начинает прокручиваться стартером, первый импульс от датчика положения коленчатого вала вызывает импульс от контроллера на включение сразу всех форсунок. Это служит для ускорения пуска двигателя.
Первоначальный впрыск топлива происходит каждый раз при пуске. Длительность импульса впрыска зависит от температуры. На холодном двигателе импульс впрыска увеличивается, для увеличения количества топлива, а на прогретом – длительность импульса уменьшается. После первоначального впрыска контроллер переключается на соответствующий режим управления форсунками.
Режим пуска двигателя.
При включении зажигания контроллер включает реле электробензонасоса, и он создает давление в магистрали подачи топлива к топливной рампе. Контроллер проверяет сигнал от датчика температуры охлаждающей жидкости и определяет правильное соотношение воздух/топливо для пуска.
После начала вращения коленчатого вала контроллер работает в пусковом режиме, пока обороты не превысят 400 об/мин или не наступит режим продувки «залитого» двигателя.
Режим продувки двигателя.
Если двигатель «залит топливом» (т.е. топливо намочило свечи зажигания), он может быть очищен путем полного открытия дроссельной заслонки при одновременном проворачивании коленчатого вала. При этом контроллер не подает импульсы впрыска на форсунки, и двигатель должен «очиститься». Контроллер поддерживает этот режим до тех пор, пока обороты двигателя ниже 400 об/мин, и датчик положения дроссельной заслонки показывает, что она почти полностью открыта (более 75%).
Если дроссельная заслонка удерживается почти полностью открытой при пуске двигателя, то он не запустится, т.к. при полностью открытой дроссельной заслонке импульсы впрыска на форсунку не подаются.
Рабочий режим управления топливоподачей.
После пуска двигателя (когда обороты более 400 об/мин) контроллер управляет системой подачи топлива в рабочем режиме. На этом режиме контроллер рассчитывает длительность импульса на форсунки по сигналам от датчика положения коленчатого вала (информация о частоте вращения), датчика массового расхода воздуха, датчика температуры охлаждающей жидкости и датчика положения дроссельной заслонки.
Рассчитанная длительность импульса впрыска может давать соотношение воздух/топливо, отличающееся от 14,7:1. Примером может служить непрогретое состояние двигателя, т.к. при этом для обеспечения хороших ездовых качеств требуется обогащенная смесь.
Рабочий режим для системы впрыска с обратной связью.
В этой системе контроллер сначала рассчитывает длительность импульса на форсунки на основе сигналов от тех же датчиков, что и в системе впрыска без обратной связи. Отличие состоит в том, что в системе с обратной связью контроллер еще использует сигнал от датчика кислорода для корректировки и тонкой регулировки расчетного импульса, чтобы точно поддерживать соотношение воздух/топливо на уровне 14,6–14,7:1. Это позволяет каталитическому нейтрализатору работать с максимальной эффективностью.
Работа системы с последовательным (фазированным) впрыском топлива.
Отличие этой системы от описанных выше состоит в том, что контроллер включает форсунки не попарно, а последовательно, в порядке зажигания по цилиндрам (1–3–4–2). Датчик фаз дает контроллеру сигнал о том, когда 1-й цилиндр находится в ВМТ в конце такта сжатия. На основании этого сигнала контроллер рассчитывает момент включения каждой форсунки, причем каждая форсунка впрыскивает топливо один раз за два оборота коленчатого вала двигателя, т.е. за один полный рабочий цикл. Такой метод позволяет более точно дозировать топливо по цилиндрам и понизить уровень токсичности отработавших газов.
Режим обогащения при ускорении .
Контроллер следит за резкими изменениями положения дроссельной заслонки (по датчику положения дроссельной заслонки) и за сигналом датчика массового расхода воздуха и обеспечивает подачу добавочного количества топлива за счет увеличения длительности импульса впрыска. Режим обогащения при ускорении применяется только для управления топливоподачей в переходных условиях (при перемещении дроссельной заслонки).
Режим мощностного обогащения.
Контроллер следит за сигналом датчика положения дроссельной заслонки и частотой вращения коленчатого вала для определения моментов, в которые водителю необходима максимальная мощность двигателя. Для достижения максимальной мощности требуется обогащенная горючая смесь, и контроллер изменяет соотношение воздух/топливо приблизительно до 12:1. В системе впрыска с обратной связью на этом режиме сигнал датчика концентрации кислорода игнорируется, т.к. он будет указывать на обогащенность смеси.
Режим обеднения при торможении.
При торможении автомобиля с закрытой дроссельной заслонкой могут увеличиться выбросы в атмосферу токсичных компонентов. Чтобы не допустить этого, контроллер следит за уменьшением угла открытия дроссельной заслонки и за сигналом датчика массового расхода воздуха и своевременно уменьшает количество подаваемого топлива путем сокращения импульса впрыска.
Режим отключения подачи топлива при торможении двигателем.
При торможении двигателем с включенной передачей и сцеплением контроллер может на короткие периоды времени полностью отключить импульсы впрыска топлива. Отключение и включение подачи топлива на этом режиме происходит при выполнении определенных условий по температуре охлаждающей жидкости, частоте вращения коленчатого вала, скорости автомобиля и углу открытия дроссельной заслонки.
Компенсация напряжения питания.
При падении напряжения питания система зажигания может давать слабую искру, а механическое движение «открытия» форсунки может занимать больше времени. Контроллер компенсирует это путем увеличения времени накопления энергии в катушках зажигания и длительности импульса впрыска.
Соответственно при возрастании напряжения аккумуляторной батареи (или напряжения в бортовой сети автомобиля) контроллер уменьшает время накопления энергии в катушках зажигания и длительность впрыска.
Режим отключения подачи топлива.
При выключенном зажигании топливо форсункой не подается, чем исключается самовоспламенение смеси при перегретом двигателе. Кроме того, импульсы впрыска топлива не подаются, если контроллер не получает опорных импульсов от датчика положения коленчатого вала, т.е. это означает, что двигатель не работает.
Отключение подачи топлива также происходит при превышении предельно допустимой частоты вращения коленчатого вала двигателя, равной 6510 об/мин, для защиты двигателя от перекрутки.
Управление электровентилятором системы охлаждения.
Электровентилятор включается и выключается контроллером в зависимости от температуры двигателя, частоты вращения коленчатого вала, работы кондиционера (если он есть на автомобиле) и других факторов. Электровентилятор включается с помощью вспомогательного реле, расположенного под консолью панели приборов с правой стороны.
При работе двигателя электровентилятор включается, если температура охлаждающей жидкости превысит 104оС, или будет дан запрос на включение кондиционера. Электровентилятор выключается после падения температуры охлаждающей жидкости ниже 101оС, после выключения кондиционера или остановки двигателя.
Здесь приведены только краткие сведения по диагностике системы впрыска с помощью контрольной лампы «CHECK ENGINE». Подробно диагностика с использованием специальных приборов и диагностических карт описана в отдельных Руководствах по ремонту систем распределенного впрыска топлива.
Контроллер постоянно выполняет самодиагностику по некоторым функциям управления. Языком контроллера для указания источника неисправности служат диагностические коды. Коды – это двузначные номера в диапазоне от 12 до 61. У разных контроллеров коды неисправностей могут несколько отличаться друг от друга. В таблице 9–3 представлена расшифровка кодов неисправностей контроллера типа «Январь–4» для системы распределенного впрыска топлива без обратной связи и с отечественными комплектующими.
Коды неисправностей контроллера типа «Январь–4»
Когда неисправность обнаружена контроллером, код заносится в память и включается контрольная лампа «CHECK ENGINE». Это не означает, что двигатель должен быть немедленно остановлен, но причина включения контрольной лампы должна быть обнаружена при первой же возможности.
Лампа «CHECK ENGINE»
Лампа находится в комбинации приборов и выполняет следующие функции:
– информирует водителя о том, что имеется неисправность в системе управления двигателем и автомобиль необходимо проверить по возможности быстрее;
– выдает диагностические коды, хранящиеся в памяти контроллера, чтобы помочь специалисту найти неисправность.
При включении зажигания лампа загорается и, пока двигатель еще не работает, происходит проверка исправности лампы и систем. После пуска двигателя лампа должна гаснуть. Если лампа продолжает гореть, то система самодиагностики обнаружила неисправность. Если неисправность пропадает, то лампа гаснет обычно через 10 сек, но код неисправности будет храниться в памяти контроллера.
В случае «непостоянного» характера неисправности лампа «CHECK ENGINE» будет гореть около 10 с, а затем погаснет. Однако соответствующий код неисправности будет храниться в памяти контроллера, пока не отключится его питание. Когда в процессе считывания кодов обнаруживаются неожиданные коды, то можно предположить, что эти коды созданы непостоянной неисправностью и могут помочь в диагностике системы.
Для связи с контроллером служит колодка диагностики. Она расположена под консолью панели приборов с левой стороны.
Коды неисправностей, хранящиеся в памяти контроллера, могут быть прочитаны либо специальным диагностическим прибором, или подсчетом числа вспышек лампы «CHECК ENGINE».
Рис. 9–31. Колодка диагностики: А – контакт, соединенный с массой; В – диагностический контакт для подачи сигнала на контроллер; G – контакт управления электробензонасосом; М – контакт выдачи информации (канал последовательных данных)
Для считывания кодов лампой необходимо соединить контакт «В» (рис. 9–31) колодки диагностики с массой. Легче всего его замкнуть на массу, соединив с контактом «А», который соединен с массой двигателя.
Рис. 9–32. Выдача кода 12 контрольной лампой «CHECK ENGINE»
Когда контакты «А» и «В» будут соединены между собой, то ключ в выключателе зажигания надо повернуть в положение III (Зажигание), но двигатель работать не должен. В этих условиях лампа «CHECK ENGINE» должна вспышками высветить три раза подряд код 12. Это должно происходить в таком порядке: вспышка, пауза (1–2 сек), вспышка, вспышка – длинная пауза (2–3 сек), и еще так два раза (рис. 9–32).
Код 12 говорит о том, что работает система диагностики контроллера. Если код 12 не высвечивается, то имеются неполадки в самой системе диагностики.
После высвечивания кода 12 лампа «СHECK ENGINE» три раза высвечивает коды неисправностей, если они существуют, или просто продолжает высвечивать код 12, если кодов неисправностей нет.
Если в памяти контроллера хранится более одного кода неисправностей, то они высвечиваются каждый по 3 раза.
По окончании диагностики размыкать контакты «А» и «В» колодки диагностики разрешается через 10 сек после выключения зажигания .
Стирают коды из памяти контроллера или после окончания ремонта или с целью посмотреть, не возникает ли неисправность снова. Для стирания необходимо отключить питание контроллера не менее, чем на 10 сек.
Питание может быть отключено либо отсоединением провода от клеммы «минус» аккумуляторной батареи, или удалением предохранителя защиты контроллера из блока предохранителей.
Чтобы не повредить контроллер, отключать и включать его питание надо только при выключенном зажигании.