Релейно контактная схема управления двигателем

Три наиболее популярные схемы управления асинхронным двигателем

Все электрические принципиальные схемы станков, установок и машин содержат определенный набор типовых блоков и узлов, которые комбинируются между собой определенным образом. В релейно-контакторных схемах главными элементами управления двигателями являются электромагнитные пускатели и реле.

Наиболее часто в качестве привода в станках и установках применяются трехфазные асинхронные двигатели с короткозамкнутым ротором. Эти двигатели просты в устройстве, обслуживании и ремонте. Они удовлетворяют большинству требований к электроприводу станков. Главными недостатками асинхронных двигателей с короткозамкнутым ротором являются большие пусковые токи (в 5-7 раз больше номинального) и невозможность простыми методами плавно изменять скорость вращения двигателей.

С появлением и активным внедрением в схемы электроустановок преобразователей частоты такие двигатели начали активно вытеснять другие типы двигателей (асинхронные с фазным ротором и двигатели постоянного тока) из электроприводов, где требовалось ограничивать пусковые токи и плавно регулировать скорость вращения в процессе работы.

Одной из преимуществ использования асинхронных двигателей с короткозамкнутым ротором является простота их включения в сеть. Достаточно подать на статор двигателя трехфазное напряжение и двигатель сразу запускается. В самом простом варианте для включения можно использовать трехфазный рубильник или пакетный выключатель. Но эти аппараты при своей простоте и надежности являются аппаратами ручного управления.

В схемах же станков и установок часто должна быть предусмотрена работа того или иного двигателя в автоматическом цикле, обеспечиваться очередность включения нескольких двигателей, автоматическое изменение направления вращения ротора двигателя (реверс) и т.д.

Обеспечить все эти функции с аппаратами ручного управления невозможно, хотя в ряде старых металлорежущих станков тот же реверс и переключение числа пар полюсов для изменения скорости вращения ротора двигателя очень часто выполняется с помощью пакетных переключателей. Рубильники и пакетные выключатели в схемах часто используются как вводные устройства, подающие напряжение на схему станка. Все же операции управления двигателями выполняются электромагнитными пускателями.

Включение двигателя через электромагнитный пускатель обеспечивает кроме всех удобств при управлении еще и нулевую защиту. Что это такое будет рассказано ниже.

Наиболее часто в станках, установках и машинах применяются три электрические схемы:

схема управления нереверсивным двигателем с использованием одного электромагнитного пускателя и двух кнопок «пуск» и «стоп»,

схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок.

схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок, в двух из которых используются спаренные контакты.

Разберем принцип работы всех этих схем.

1. Схема управления двигателем с помощью магнитного пускателя

Схема показана на рисунке.

При нажатии на кнопку SB2 «Пуск» на катушка пускателя попадает под напряжение 220 В, т.к. она оказывается включенной между фазой С и нулем ( N) . Подвижная часть пускателя притягивается к неподвижной, замыкая при этом свои контакты. Силовые контакты пускателя подают напряжение на двигатель, а блокировочный замыкается параллельно кнопке «Пуск». Благодаря этому при отпускании кнопки катушка пускателя не теряет питание, т.к. ток в этом случае идет через блокировочный контакт.

Если бы блокировочный контакт не был бы подключен параллельно кнопки (по какой-либо причине отсутствовал), то при отпускании кнопки «Пуск» катушка теряет питание и силовые контакты пускателя размыкаются в цепи двигателя, после чего он отключается. Такой режим работы называют «толчковым». Применяется он в некоторых установках, например в схемах кран-балок.

Остановка работающего двигателя после запуска в схеме с блокировочным контактом выполняется с помощью кнопки SB1 «Стоп». При этом, кнопка создает разрыв в цепи, магнитный пускатель теряет питание и своими силовыми контактами отключает двигатель от питающей сети.

Читайте также:  Комментарии по ремонту автомобилей

В случае исчезновения напряжения по какой-либо причине магнитный пускатель также отключается, т.к. это равносильно нажатию на кнопку «Стоп» и созданию разрыва цепи. Двигатель останавливается и повторный запуск его при наличии напряжения возможен только при нажатии на кнопку SB2 «Пуск». Таким образом, магнитный пускатель обеспечивает т.н. «нулевую защиту». Если бы он в цепи отсутствовал и двигатель управлялся рубильником или пакетным выключателем, то при возврате напряжения двигатель запускался бы автоматически, что несет серьезную опасность для обслуживающего персонала. Подробнее смотрите здесь — защита минимального напряжения.

Анимация процессов, протекающих в схеме показана ниже.

2. Схема управления реверсивным двигателем с помощью двух магнитных пускателей

Схема работает аналогично предыдущей. Изменение направления вращения (реверс) ротор двигателя меняет при изменении порядка чередования фаз на его статоре. При включении пускателя КМ1 на двигатель приходят фазы — A , B , С, а при включении пускателя KM2 — порядок фаз меняется на С, B , A.

Схема показана на рис. 2.

Включение двигателя на вращение в одну сторону осуществляется кнопкой SB2 и электромагнитным пускателем KM1 . При необходимости смены направления вращения необходимо нажать на кнопку SB1 «Стоп», двигатель остановится и после этого при нажатии на кнопку SB 3 двигатель начинает вращаться в другую сторону. В этой схеме для смены направления вращения ротора необходимо промежуточное нажатие на кнопку «Стоп».

Кроме этого, в схеме обязательно использование в цепях каждого из пускателей нормально-закрытых (размыкающих) контактов для обеспечения защиты от одновременного нажатия двух кнопок «Пуск» SB2 — SB 3, что приведет к короткому замыканию в цепях питания двигателя. Дополнительные контакты в цепях пускателей не дают пускателям включится одновременно, т.к. какой-либо из пускателей при нажатии на обе кнопки «Пуск» включиться на секунду раньше и разомкнет свой контакт в цепи другого пускателя.

Необходимость в создании такой блокировки требует использования пускателей с большим количеством контактов или пускателей с контактными приставками, что удорожает и усложняет электрическую схему.

Анимация процессов, протекающих в схеме с двумя пускателями показана ниже.

3. Схема управления реверсивным двигателем с помощью двух магнитных пускателей и трех кнопок (две из которых имеют контакты с механической связью)

Схема показана на рисунке.

Отличие этой схемы от предыдущей в том, что в цепи каждого пускателя кроме общей кнопки SB1 «Стоп»включены по 2 контакта кнопок SB2 и SB 3, причем в цепи КМ1 кнопка SB2 имеет нормально-открытый контакт (замыкающий), а SB 3 — нормально-закрытый (размыкающий) контакт, в цепи КМ3 — кнопка SB2 имеет нормально-закрытый контакт (размыкающий), а SB 3 — нормально-открытый. При нажатии каждой из кнопок цепь одного из пускателей замыкается, а цепь другого одновременно при этом размыкается.

Такое использование кнопок позволяет отказаться от использования дополнительных контактов для защиты от одновременного включения двух пускателей (такой режим при этой схеме невозможен) и дает возможность выполнять реверс без промежуточного нажатия на кнопку «Стоп», что очень удобно. Кнопка «Стоп» нужна для окончательной остановки двигателя.

Приведенные в статье схемы являются упрощенными. В них отсутствуют аппараты защиты (автоматические выключатели, тепловые реле), элементы сигнализации. Такие схемы также часто дополняются различными контактами реле, выключателей, переключателей и датчиков. Также возможно питание катушки электромагнитного пускателя напряжение 380 В. В этом случае он подключается от двух любых фаз, например, от А и B . Возможно использование понижающего трансформатора для понижения напряжения в схеме управления. В этом случае используются электромагнитные пускатели с катушками на напряжение 110, 48, 36 или 24 В.

Читайте также:  Мотор схема ситроен берлинго

Релейно-контакторное управление электродвигателями

Назначение релейно-контакторного управления. Релейно-контакторное управление позволяет осуществить автоматический, дистанционный пуск, изменение частоты вращения, останов, реверсирование, торможение и защиту двигателя. Этот вид управления относится к разомкнутым системам в том смысле, что он не охвачен обратными связями.

В результате этого возмущающее воздействие (например, изменение нагрузки на валу двигателя) изменяет заданный режим, т.е. приводит к изменению частоты вращения вала двигателя.

Для сложных приводов применяют замкнутые системы, т.е. системы автоматического регулирования, охваченные обратными связями.

В таких системах поддерживается заданный режим работы при наличии возмущающих воздействий (изменение нагрузки, напряжения питания и т.д.).

Изображение схем релейно-контакторного управления. Схемы релейно-контакторного управления вычерчивают как совмещенные или как элементные (развернутые). В совмещенных схемах все элементы аппарата размещают на чертеже так, как они расположены в натуре. Монтажные схемы вычерчивают как совмещенные. Совмещенные схемы громоздки и сложны для чтения. При проектировании электропривода используют развернутые схемы, облегчающие понимание работы установки. На развернутой схеме элементы силовой цепи и управления показаны разнесенными, так же как контакты и обмотки реле.

При, этом контакты аппаратов изображают в положении, которое соответствует обесточенному состоянию обмоток. В соответствии с этим все контакты делят на нормально открытые, или замыкающие (3), и нормально закрытые, или размыкающие (Р).

Когда катушка обесточена, цепь замыкающих контактов разомкнута, а цепь размыкающих контактов замкнута.

Схема управления и защиты асинхронного двигателя с помощью реверсивного магнитного пускателя. Магнитный пускатель состоит из одного или двух контакторов, смонтированных на общем основании и помещенных в металлический корпус.

Пускатели, как правило, снабжают встроенным тепловым реле. Магнитный пускатель с одним контактором называют нереверсивным. С его помощью осуществляют пуск, останов, защиту электродвигателя от самопроизвольных включений и перегрузок.

Магнитный пускатель с двумя контакторами называют реверсивным: он помимо перечисленных функций обеспечивает реверсирование двигателя. Рассмотрим работу реверсивного магнитного пускателя (рис. 4).

Пускатель содержит два контактора: один для пуска «вперед» (Вп), другой — для пуска «назад» (Нз).

Защита двигателя от токов короткого замыкания осуществляется тремя плавкими предохранителями, а от перегрузок — двумя тепловыми реле: 1РТ и 2РТ. Обмотки статора двигателя подключают к сети через плавкие предохранители, рабочие контакты Вп или Нз контакторов и нагревательные элементы тепловых реле 1РТ и 2РТ (для двух фаз).

Работа схемы при пуске «вперед» происходит так.

Рис. 4 Схема реверсивного магнитного пускателя

При нажатии кнопки Вп замыкаются контакты 3, 4 и к обмотке контактора Вп подводится напряжение от зажимов сети Л1 — Л3. Контактор Вп срабатывает и замыкающие контакты Вп силовой цепи замыкаются, подключая обмотку статора к сети.

Одновременно замыкающий блок-контакт контактора Вп замыкается и цепь кнопки Вп шунтируется. Таким образом, кнопку Вп можно отпустить. Для останова двигателя необходимо нажать кнопку «Стоп».

При этом снимается напряжение с обмотки контактора Вп, в результате чего размыкаются его главные контакты и со статорных обмоток двигателя снимается напряжение. Одновременно размыкаются блок-контакты Вп, шунтирующие кнопку Вп. Так же работает схема и при пуске двигателя «назад» после нажатия кнопки Нз, с той лишь разницей, что срабатывает контактор Нз и последовательность подключения фаз статора становится обратной. Это приводит к изменению направления вращения ротора двигателя. Размыкающие контакты кнопки Вп 1, 2 и кнопки Нз 5, 6 размыкаются раньше, чем соответствующие замыкающие контакты 3, 4 и 7, 8. Это обеспечивает их взаимную блокировку и не позволяет подавать напряжение на обмотки контакторов Вп и Нз одновременно.

Читайте также:  Машина дергается если резко отпустить газ

Схема автоматического пуска асинхронного двигателя с контактными кольцами. Рассмотрим работу схемы рис. 5.

Обмотки статора двигателя присоединены к сети через замыкающие контакты линейного контактора ЛК. К обмоткам ротора подключены три одинаковых резистора, соединенных звездой.

Схема управления пуском состоит из реле ускорения 1У и 2У, токовых реле ускорения 1РТ и 2РТ и реле времени РВ.

Рис. 5 Схема автоматического пуска асинхронного двигателя с контактными кольцами

При нажатии на кнопку «Пуск» к контактору ЛК подводится напряжение сети, контактор срабатывает, его главные контакты ЛК и блок-контакты БК замыкаются. В результате к обмоткам статора подводится напряжение, а кнопка «Пуск» оказывает заблокированной. В фазных обмотках ротора двигателя возникают ЭДС и ток, а ротор начинает вращаться.

Под действием тока ротора, проходящего через сопротивление и обмотки реле 1РТ и 1РТ, эти реле срабатывают и размыкают свои контакты 1РТ и 1РТ. Одновременно с подачей напряжения на статор двигателя подается питание на обмотку реле времени РВ, которое замыкает свои контакты спустя некоторое время после размыкания контакторов 1РТ и 2РТ, готовя цепь для подключения обмоток реле ускорения 1У и 2У.

По мере увеличения частоты вращения ротора его фазный ток уменьшается и достигает тока отпускания реле 1РТ, которое замыкает свои контакты, и к обмотке реле подводится напряжение.

Реле срабатывает и замыкает свои главные контакты, шунтирующие сопротивления.

В результате ток в роторе увеличивается скачком и реле 2РТ продолжает удерживать свои контакты в разомкнутом состоянии. Блок-контакты блокируют цепь контактов реле 1РТ.

Частота вращения ротора продолжает нарастать и ток в роторе уменьшается, достигая тока отпускания реле 2РТ.

Контакты реле 2РТ замыкаются и на обмотку реле 2У подается напряжение. Последнее срабатывает, замыкая свои контакты 2У, которые шунтируют резисторы.

Блок-контакты 2У замыкаются, блокируя контакты реле 2РТ. Рассмотренная последовательность работы схемы обеспечивает плавный разгон двигателя.

ЛИТЕРАТУРА

1. Касаткин В.С., Немцов М.В., Электротехника. — М.; Энергоатомиздат, 2000.

2. Основы промышленной электроники /Под ред. В.Г. Герасимова.- М.: Высшая школа, 1985.

3. Основы теории цепей; Учебник для ВУЗов. /В.П. Бакалов и др. 2-ое изд. перераб. и доп. – М.; 2000.

4. Сборник задач по электротехнике и основам электроники /Под ред. В.Г. Герасимова.- М.: Высшая школа, 1987.

5. Прянишников В.А. Электроника. — СПб; Корона принт, 2002.

6. Хоровиц П., Хилл У. Искусство схемотехники.- М.: Мир, 1997.

7. Амочаева Г.Г. Электронный конспект лекций.

1. Алексеенко А.Г., Шагурин Н.И. Микросхемотехника. Учебное пособие для вузов.- М.: Радио и связь, 1990.

2. Жеребцов И.П. Основы электроники.- Л.: Энергоатомиздат, 1990.

3. Попов В.П., Основы теории цепей.- Учебник для ВУЗов.- 3-е изд. испр.-М.: Высшая школа, 2000.

4. Электротехника и электроника в экспериментах и упражнениях: Практикум на Electronics Workbench. в 2-х томах, Под ред. Д.И. Панфилова ДОДЭКА, 1999.-т.1-Электроника.

5. Электротехника/Ю.М. Борисов, Д.Н. Липатов, Ю.Н. Зорин. Учебник для вузов.- 2-е изд., перераб. и доп.- М.: Энергоатомиздат, 1985.

Оцените статью