Регулятор силы тока для зарядного устройства автомобиля

Регулировка тока и напряжения в зарядных устройствах: Самый простой регулятор для зарядного устройства

Самый простой регулятор для зарядного устройства

Привет, сегодня соберём простую схему регулятора для зарядного устройства, который состоит всего из двух деталей.

Основой схемы будет транзистор П210, он выдерживает 10 ампер, его конечно надо обязательно на радиатор ставить. У меня под рукой не было радиатора, я пока соберу без него, но в конечном итоге надо обязательно ставить на радиатор.

Детали всего 2, нарисовано три — потому что добавлен конденсатор, то есть, если вы питаетесь от трансформаторного зарядное устройство, где стоит просто диодный мост тогда надо обязательно конденсатор ставить, если уже от готового блока питания, например от такого

то конденсатор ставить не обязательно. По сути, если конденсатор не брать в расчёт, у нас только транзистор и на один килоом переменный резистор. Я взял вот такой, просто он у меня был под рукой,

как видите он проволочный, но можете любой брать на ваше усмотрение.

Само подключение резистора, хорошо видно на схеме, на транзисторе цоколёвку привёл то есть, вот так вот

у нас корпус это коллектор, база средний и эмиттер это нижняя нога.

На коллектор приходит минус от источника, с эмиттера минус выходит уже на аккумулятор и база на средний движок переменного резистора.

Сейчас это всё соберу и покажу вам, как это будет выглядеть в собранном виде, еще раз напоминаю радиатор для транзистора обязателен.

В общем что у нас получилось, конечно я собирал всё навесным монтажом, потому что делать на какой либо плате нет смысла. Ведь переменный резистор обычно выводят на переднюю панель ЗУ, а транзистор надо будет поставить туда, где будет для него место вместе с радиатором.

Введите электронную почту и получайте письма с новыми поделками.

Теперь я возьму блок питания от ноутбука, заявлено 18,5 вольта, подключаем плюс к плюсу, минус к минусу, нагрузкой пока послужит лампочка.

Подсоединил, попробовал, всё шикарно регулируется, кстати вначале я сказал, что регулировка тока, но это не совсем точно, тут скорее регулировка напряжения, но уменьшая напряжение мы уменьшим и ток, в принципе и то, и то верно, но точнее будет говорить всё же, что регулировка напряжения.

Регулируется кстати довольно плавно и практически от нуля, такой приставкой можно заряжать не только автомобильные АКБ, без проблем можно и мотоциклетные аккумуляторы как 6 вольтовые, так и 12.

Транзистор без радиатора греется, поэтому нужно обязательно ставить на теплоотвод.

Кстати сразу напишу, что ток которым будете заряжать аккумуляторы, напрямую зависит от источника, то есть, если это трансформатор, значит зависит от трансформатора, диодного моста. Если импульсный блок питания, то от его мощности на сколько ампер он рассчитан.

Вот такой простейший регулятор для зарядного устройства всего на 2-х деталях, собирается буквально за пару минут, чуть ли не на коленке, не спеша попивая кофе. Рекомендую к повторению, кто-то скажет сейчас такие транзисторы не найдёшь, ребята я показываю, как можно собрать с учётом того, что может у кого-то, где-то завалялось. Конечно можно и кремниевые, современные использовать, но П210 всё таки он не дефицит и я думаю у каждого найдётся, где нибудь в закромах.

cxema.org — Три схемы простых регуляторов тока

В сети очень много схем регуляторов напряжения для самых разных целей, а вот с регуляторами тока дела обстоят иначе. И я хочу немного восполнить этот пробел, и представить вам три простые схемы регуляторов постоянного тока, которые стоит взять на вооружение, так, как они универсальны и могут быть использованы во многих самодельных конструкциях.

Регуляторы тока по идее не многим отличается от регуляторов напряжения. Прошу не путать регуляторы тока со стабилизаторами тока, в отличии от первых они поддерживают стабильный выходной ток не зависимо от напряжения на входе и выходной нагрузки.

Стабилизатор тока — неотемлимая часть любого нормального лабораторного блока питания или зарядного устройства, предназначен он для ограничения тока подаваемого на нагрузку. В этой статье мы рассмотрим пару стабилизаторов и один регулятор общего применения.

Во всех трех вариантах в качестве датчика тока использованы шунты, по сути низкоомные резисторы. Для увеличения выходного тока любой из перечисленных схем нужно будет снизить сопротивление шунта. Нужное значение тока выставляют вручную, как правило вращением переменного резистора. Все три схемы работают в линейном режиме, а значит силовой транзистор при больших нагрузках будет сильно нагреваться.

Первая схема отличается максимальной простотой и доступностью компонентов. Всего два транзистора, один из них управляющий, второй является силовым, по которому и протекает основной ток.

Датчик тока представляет из себя низкоомный проволочный резистор. При подключении выходной нагрузки на этом резисторе образуется некоторое падение напряжения, чем мощнее нагрузка, тем больше падение. Такого падения напряжения достаточно для срабатывания управляющего транзистора, чем больше падение, тем больше приоткрыт транзистор. Резистор R1, задает напряжение смещения для силового транзистора, именно благодаря ему основной транзистор находится в открытом состоянии. Ограничение тока происходит за счет того, что напряжение на базе силового транзистора, которое было образовано резистором R1 грубо говоря затухаеться или замыкается на массу питания через открытый переход маломощного транзистора, этим силовой транзистор будет закрываться, следовательно, ток протекающий по нему уменьшается вплоть до полного нуля.

Читайте также:  Стук при холодном пуске двигателя

Резистор R1 по сути обычный делитель напряжения, которым мы можем задать как бы степень приоткрытия управляющего транзистора, а следовательно, управлять и силовым транзистором ограничивая ток протекающий по нему.

Вторая схема построена на базе операционного усилителя. Ее неоднократно использовал в зарядных устройствах для автомобильного аккумулятора. В отличии от первого варианта — эта схема является стабилизатором тока.

Как и в первой схеме тут также имеется датчик тока (шунт), операционный усилитель фиксирует падение напряжения на этом шунте, все по уже знакомой нам схеме. Операционный усилитель сравнивает напряжение на шунте с опорным, которое задается стабилитроном. Переменным резистором мы искусственно меняем опорное напряжение. Операционный усилитель в свою очередь постарается сбалансировать напряжение на входах путем изменения выходного напряжения.

Выход операционного усилителя управляет мощным полевым транзистором. То есть принцип работы мало чем отличается от первой схемы, за исключением того, что тут имеется источник опорного напряжения выполненный на стабилитроне.

Эта схема также работает в линейном режиме и силовой транзистор при больших нагрузках будет сильно нагреваться.

Последняя схема построена на базе популярной интегральной микросхеме стабилизатора LM317. Это линейный стабилизатор напряжения, но имеется возможность использовать микросхему в качестве стабилизатора тока.

Нужный ток задается переменным резистором. Недостатком схемы является то, что основной ток протекает именно по ранее указанному резистору и естественно тот нужен мощный, очень желательно использование проволочных резисторов.

Максимально допустимый ток для микросхемы LM317 1,5 ампера, увеличить его можно дополнительным силовым транзистором. В этом случае микросхема уже будет в качестве управляющей, поэтому нагреваться не будет, взамен будет нагреваться транзистор и от этого никуда не денешься.

Зарядные устройства

Для аккумуляторов определены условия зарядки: это ток 0,1Q (Q — номинальная ёмкость аккумулятора) в течение 15 ч (напряжение на каждом аккумуляторе в конце зарядки — 1,5 В). Следить за этим, как правило, не получается, возникает необходимость в автоматическом зарядном устройстве (АЗУ), не требующем никакого внимания, работающем по принципу «включил и забыл». Для этого зарядное устройство должно обеспечить указанный режим зарядки до достижения на каждом аккумуляторе напряжения 1,5 В, затем уменьшить зарядный ток до значения 0,01. 0,02Q и оставаться в таком состоянии неограниченное время, поддерживая аккумуляторную батарею (АКБ) всегда готовой к работе [1]. Будет удобно, если режим работы АЗУ будет отображаться световой индикацией. Исходя из этой задачи, было разработано автоматическое устройство (рис. 1), содержащее минимум деталей широкого применения — всего потребовались четыре транзистора, которые уже в то время были устаревшими, но подходящими по параметрам для работы в данном устройстве.

Устройство работает по сей день, причём постоянно включённое, по крайней мере, около 20 последних лет. Радиоприёмник уже с перестроенным УКВ-диапазоном используется ежедневно как радиоточка на кухне. Практикой подтверждается высокая надёжность полупроводниковых приборов, если только они не работают в запредельных режимах и не имеют заводского брака или подделки. Однако при сборке устройства необходимо проверить и измерить параметры каждого элемента, особенно оксидных конденсаторов, которые оказываются самыми ненадёжными элементами. При повторении этого устройства можно применить множество других транзисторов и диодов, чьи предельно допустимые параметры превышают величины, действующие в устройстве.

Питание АЗУ от сети осуществляется через понижающий трансформатор, чем обеспечивается электробезопасность, далее следует выпрямительный мост VD1 -VD4. Если АЗУ будет использоваться для питания радиоприёмника, то для устранения так называемого мультипликативного фона диоды следует шунтировать керамическими конденсаторами. Конденсатор С1 сглаживает пульсации выпрямленного напряжения, его ёмкость должна быть не менее 1000 мкФ на каждые 100 мА потребляемого тока. Образцовое напряжение (9 В) снимается с прецизионного стабилитрона VD5. Резистор R1 определяет его номинальный ток стабилизации (10 мА). Ограничение напряжения на аккумуляторной батарее (АКБ) при достижении полной зарядки осуществляется дифференциальным каскадом VT1VT2 следующим образом. Заданное напряжение, при котором требуется ограничить ток зарядки, определяется делителем напряжения R2R3 и подаётся на базу транзистора VT1, а на базу VT2 поступает напряжение с АКБ, с учётом падения напряжения на диоде VD7, который отключает АЗУ от АКБ при пропадании напряжения в сети. Пока АКБ не зарядилась, напряжение на базе VT2 меньше, чем на базе VT1, и, следовательно, VT2 закрыт и светодиод HL2 не светится. Светится HL1, поскольку VT1 находится в активном режиме. Величина тока определяется сопротивлением резистора R5 и напряжением на базе VT1 и не зависит от напряжения на его коллекторе. Такая схема известна как источник тока (ИТ) [2]. Следовательно, и падение напряжения на резисторе R4 будет стабильным, при этом будет светиться HL1, указывая, что идёт процесс зарядки АКБ.

Особая точность поддержания зарядного тока не требуется, решающее значение имеет ограничение напряжения АКБ при достижении полной зарядки. Точности дифференциального каскада и параметрического стабилизатора напряжения вполне достаточно для решения этой задачи. При достижении напряжения на АКБ, соответствующего полной зарядке, транзистор VT2 переходит в активный режим, появляется его коллекторный ток, начинает светиться светодиод HL2, указывая, что АКБ зарядилась, соответственно ток через VT1 уменьшится, соответственно уменьшится и ток зарядки до величины 0,01. 0,02Q, что исключает перезарядку и порчу АКБ. Конденсатор С2 устраняет возможное самовозбуждение, резистор R6 снижает напряжение на коллекторе VT2, а следовательно, и рассеиваемую на нём мощность. Диод VD6 обеспечивает надёжное закрывание транзистора VT4.

Читайте также:  Диагностика двигателя ваз 2131

Транзистор VT4 можно заменить любым из серий КТ973, КТ814, КТ816 и другими (учитывая ток зарядки и рассеиваемую при этом мощность), VT3 — любым транзистором из серий КТ3102, КТ315, КТ503, а VT1, VT2 — любыми из серий КТ203, КТ208, КТ209, КТ502. Коэффициент передачи тока базы транзисторов — не менее 50.

Если потребуется заряжать АКБ больших ёмкости и (или) напряжения, то можно собрать АЗУ по схеме, изображённой на рис. 2, с применением транзисторов другой структуры как более распространённых. Образцовое и сравниваемое с ним напряжение подают на базы транзисторов дифференциального каскада через делители или непосредственно, в зависимости от напряжения АКБ. Так, если её напряжение меньше 9 В (напряжение стабилизации Д818 = 9 В), то исключают резисторы R9, R11, на базу VT2 напряжение подают через резистор R8, а требуемое значение напряжения окончания зарядки АКБ устанавливают делителем R3R4R5.

Если же напряжение АКБ более 9 В, то исключают резисторы R4, R5, а напряжение окончания зарядки устанавливают делителем R8R9R1 1. Ток делителей выбирают в интервале 0,5. 1 мА. Резистором R6 выставляется ток зарядки около 10 мА после определения напряжения на базе транзистора VT1. Подбором резистора R1 устанавливают номинальный ток стабилизации стабилитрона VD5 — 10 мА. Диод VD6 ограничивает обратное напряжение на эмиттерном переходе VT2, что может произойти при коротком замыкании в цепи АКБ.

Транзисторы VT3, VT4, VT5 образуют мощный источник тока [2]. Благодаря первому из них падение напряжения на резисторах R7, R12 можно задать порядка 1 В, что может потребоваться, если напряжение АКБ соизмеримо с напряжением на выходе выпрямителя. При напряжении на АКБ менее 9 В можно исключить транзистор VT3, а падение напряжения на резисторах R7, R12 выбрать равным нескольким вольтам, при этом уменьшится мощность, рассеиваемая на транзисторе VT5, но потребуется резистор R12 соответственно с большей мощностью рассеяния.

Мощность и напряжение на вторичной обмотке понижающего трансформатора Т1, электрические параметры диодов VD1-VD4, VD7, транзистора VT5 определяются ёмкостью и напряжением АКБ. Для обеспечения длительной безотказной работы устройства предельные значения параметров полупроводниковых приборов и резисторов должны превосходить действующие в устройстве значения в 2. ..3 раза. Если предполагается, что устройство будет работать круглосуточно без надзора, особое внимание следует уделить пожарной безопасности. Трансформатор должен быть достаточной мощности, с надёжной изоляцией и небольшим током холостого хода, свидетельствующем об отсутствии насыщения магнитопровода и достаточном числе витков первичной обмотки. Для определения максимально допустимого сетевого напряжения и выявления короткозамкнутых витков полезно снять характеристику намагничивания трансформатора (зависимость тока холостого хода от напряжения на сетевой обмотке). Резкий рост тока холостого хода допустим только при напряжении на обмотке, превышающем номинальное сетевое на 10% (при номинальном 230 В — это 253 В), что свидетельствует о достаточном числе витков первичной обмотки. Корпус АЗУ также должен удовлетворять требованиям пожарной и электробезопасности.

При налаживании следует нагрузить выпрямитель АЗУ током 0,01. 0,02Q и установить подбором резистора R6 номинальный ток зарядки (примерно 10 мА), поскольку именно при таком режиме должно происходить ограничение зарядного тока. Затем, в зависимости от напряжения АКБ, выбирают конфигурацию схемы устройства и устанавливают предварительно напряжение ограничения зарядки АКБ. Если это напряжение более 9 В, то, согласно вышеизложенному, базу транзистора VT1 подключают к стабилитрону VD5 через резистор R3, в этом случае напряжение на его эмиттере будет меньше примерно на 0,65 В, т. е. около 8,4 В. Следовательно, при токе около 10 мА ближайший номинал резистора R6 — 820 Ом. Затем определяют номиналы резисторов R7, R12 и необходимость в транзисторе VT3 для достижения требуемого тока зарядки. При измерении тока зарядки светодиод HL1 не должен гореть. Для выполнения этой работы АЗУ нагружают цепью по схеме на рис. 3. Далее подстроечным резистором R11 устанавливают ток 0,01 . 0,2Q при напряжении на выходе АЗУ, соответствующем 1,5 В на каждый аккумулятор АКБ.

Если напряжение АКБ менее 9 В, то исключают R9, R11, с помощью делителей R3R4R5 устанавливают предварительно напряжение, соответствующее заряженной АКБ плюс падение напряжения на диоде VD7, затем, согласно вышеизложенному, определяют сопротивление резисторов R6, R7, R12 и окончательно устанавливают напряжение ограничения зарядки АКБ подстроечным резистором R5.

Литература

  1. Немного о зарядке никель-кадмиевых аккумуляторов. — Радио, 1996, № 7, с. 48.
  2. Семушин С. Источники тока и их применение. — Радио, 1978, №1, с. 39; №2, с. 44.

Что такое регулирование напряжения трансформатора? — определение и объяснение

Определение: Регулировка напряжения определяется как изменение величины принимаемого и отправляемого напряжения трансформатора. Регулировка напряжения определяет способность трансформатора обеспечивать постоянное напряжение для переменных нагрузок.

Когда трансформатор нагружен постоянным напряжением питания, напряжение на клеммах трансформатора меняется. Изменение напряжения зависит от нагрузки и ее коэффициента мощности.

Математически регулирование напряжения представляется как:

где,
E 2 — напряжение на вторичной клемме без нагрузки
В 2 — напряжение на вторичной клемме при полной нагрузке

Стабилизация напряжения с учетом первичного напряжения на клеммах трансформатора выражается как
Давайте разберемся с регулированием напряжения, взяв пример, описанный ниже:

Если клеммы вторичной обмотки трансформатора разомкнуты или нагрузка не подключена к клеммам вторичной обмотки, ток холостого хода протекает через него.

Если через клеммы вторичной обмотки трансформатора не течет ток, напряжение на их резистивной нагрузке падает, а реактивная нагрузка становится равной нулю. Падение напряжения на первичной обмотке трансформатора незначительно.

Если трансформатор полностью загружен, т. Е. Нагрузка подключена к их вторичной клемме, на нем появляются падения напряжения. Значение регулирования напряжения всегда должно быть меньше для лучшей работы трансформатора.

Читайте также:  Датчик двигателя газ 2752

Из представленной выше принципиальной схемы сделаны следующие выводы

  • Первичное напряжение трансформатора всегда больше, чем наведенная ЭДС на первичной стороне. В 1 > E 1
  • Напряжение на вторичной клемме без нагрузки всегда больше, чем напряжение при полной нагрузке. E 2 > V 2

С учетом приведенной выше принципиальной схемы составлены следующие уравнения.
Приблизительное выражение для вторичного напряжения холостого хода для различных типов нагрузки составляет

  1. Для индуктивной нагрузки Где,
    • Для емкостной нагрузки

Таким образом, мы определяем регулирование напряжения трансформатора.

Стабилизация напряжения синхронного генератора — прямой и косвенный метод

Регулировка напряжения синхронного генератора — это повышение напряжения на клеммах, когда нагрузка снижается с номинального значения полной нагрузки до нуля, скорость и ток возбуждения остаются постоянными. Это зависит от коэффициента мощности нагрузки. Для единичного и запаздывающего коэффициентов мощности всегда есть падение напряжения с увеличением нагрузки, но для определенной опережающей мощности регулирование напряжения полной нагрузки равно нулю.

Регулировка напряжения определяется уравнением, показанным ниже.

  • | E a | — величина генерируемого напряжения на фазу
  • | V | — величина номинального напряжения на клеммах на фазу

В этом случае напряжение на клеммах одинаково как для полной, так и для нулевой нагрузки. При более низких ведущих факторах мощности напряжение растет с увеличением нагрузки, и регулирование отрицательное.

Определение регулирования напряжения

Существует два основных метода, которые используются для определения регулирования напряжения генераторов переменного тока с гладким цилиндрическим ротором. Они называются методом прямого испытания нагрузки и косвенным методом регулирования напряжения. Косвенный метод дополнительно классифицируется как метод с синхронным импедансом , метод ампер-виток, и метод с нулевым коэффициентом мощности .

Испытание прямой нагрузкой

Генератор работает на синхронной скорости, и его напряжение на клеммах настроено на номинальное значение V.Нагрузка изменяется до тех пор, пока амперметр и ваттметр не покажут номинальные значения при заданном коэффициенте мощности. Нагрузка снимается, а скорость и возбуждение поля остаются постоянными. Регистрируется значение холостого хода и напряжения холостого хода.

Это также определяется процентным регулированием напряжения и выражается уравнением, показанным ниже.

Метод прямой нагрузки подходит только для небольших генераторов переменного тока мощностью менее 5 кВА.

Косвенные методы регулирования напряжения

Для больших генераторов переменного тока используются следующие три косвенных метода для определения регулирования напряжения.

Самые выгодные действующие правила — отличные предложения по действующим правилам от продавцов действующих норм по всему миру

Отличные новости . Вы находитесь в нужном месте с учетом действующих правил. К настоящему времени вы уже знаете, что что бы вы ни искали, вы обязательно найдете это на AliExpress. У нас буквально тысячи отличных продуктов во всех товарных категориях. Ищете ли вы товары высокого класса или дешевые и недорогие оптовые закупки, мы гарантируем, что он есть на AliExpress.

Вы найдете официальные магазины торговых марок наряду с небольшими независимыми продавцами со скидками, каждый из которых предлагает быструю доставку и надежные, а также удобные и безопасные способы оплаты, независимо от того, сколько вы решите потратить.

AliExpress никогда не уступит по выбору, качеству и цене.Каждый день вы будете находить новые онлайн-предложения, скидки в магазинах и возможность сэкономить еще больше, собирая купоны. Но вам, возможно, придется действовать быстро, так как это главное действующее законодательство в кратчайшие сроки станет одним из самых востребованных бестселлеров. Подумайте, как вам будут завидовать друзья, когда вы скажете им, что у вас есть действующие правила на AliExpress. Благодаря самым низким ценам в Интернете, дешевым тарифам на доставку и возможности получения на месте вы можете еще больше сэкономить.

Если вы все еще не уверены в действующем законодательстве и думаете о выборе аналогичного товара, AliExpress — отличное место для сравнения цен и продавцов. Мы поможем вам решить, стоит ли доплачивать за высококачественную версию или вы получаете столь же выгодную сделку, приобретая более дешевую вещь. А если вы просто хотите побаловать себя и потратиться на самую дорогую версию, AliExpress всегда позаботится о том, чтобы вы могли получить лучшую цену за свои деньги, даже сообщая вам, когда вам будет лучше дождаться начала рекламной акции. и ожидаемая экономия.AliExpress гордится тем, что у вас всегда есть осознанный выбор при покупке в одном из сотен магазинов и продавцов на нашей платформе.Реальные покупатели оценивают качество обслуживания, цену и качество каждого магазина и продавца. Кроме того, вы можете узнать рейтинги магазина или отдельных продавцов, а также сравнить цены, доставку и скидки на один и тот же продукт, прочитав комментарии и отзывы, оставленные пользователями. Каждая покупка имеет звездный рейтинг и часто имеет комментарии, оставленные предыдущими клиентами, описывающими их опыт транзакций, поэтому вы можете покупать с уверенностью каждый раз. Короче говоря, вам не нужно верить нам на слово — просто слушайте миллионы наших довольных клиентов.

А если вы новичок на AliExpress, мы откроем вам секрет. Непосредственно перед тем, как вы нажмете «купить сейчас» в процессе транзакции, найдите время, чтобы проверить купоны — и вы сэкономите еще больше. Вы можете найти купоны магазина, купоны AliExpress или собирать купоны каждый день, играя в игры в приложении AliExpress. Вместе с бесплатной доставкой, которую предлагают большинство продавцов на нашем сайте, мы думаем, вы согласитесь, что вы получите эти текущие правила по самой выгодной цене.

У нас всегда есть новейшие технологии, новейшие тенденции и самые обсуждаемые лейблы. На AliExpress отличное качество, цена и сервис всегда в стандартной комплектации.

Сип аббревиатура: расшифровка, конструкция, виды, технические характеристики

Оцените статью