Реферат устройство двигателя принцип работы двигателя

Принцип работы двигателя внутреннего сгорания

Двигатель внутреннего сгорания — устройство, преобразующее энергию в рабочей полости. Изучение принципа работы ДВС. Процессы, происходящие в течение одного периода. Рабочий процесс двухтактного двигателя, источник энергии для автомобиля различного типа.

Рубрика Транспорт
Вид реферат
Язык русский
Дата добавления 05.12.2014
Размер файла 30,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования РФ ФГБОУ ВПО

Ишимский государственный педагогический институт им. П.П. Ершова

Принцип работы двигателя внутреннего сгорания

двигатель двухтактный автомобиль

1. История развития ДВС

2. Принцип работы ДВС

3. Применение ДВС

1. История развития ДВС

Двигатель — устройство (паровая машина, турбина, двигатель внутреннего сгорания и т.п.) для непрерывного преобразования энергии рабочего тела (паров жидкости, газа или смеси газов) в механическую энергию.

Таким образом, двигатель внутреннего сгорания (ДВС) представляет собой устройство, преобразующее энергию в рабочей полости, т. е. внутри двигателя. Попытки создать устройство, подобное двигателю внутреннего сгорания, начались с 18 века. Созданием устройства, которое могло бы преобразовывать энергию топлива в механическую, занимались многие изобретатели.

Первыми в этой области были братья Ньепс из Франции. Они придумали прибор, который сами назвали «пирэолофор». В качестве топлива для данного двигателя должна была использоваться угольная пыль. Однако, данное изобретение так и не получило научного признания, и существовала, по сути, только в чертежах.

Первым успешным двигателем, который начал продаваться, был двигатель внутреннего сгорания бельгийского инженера Ж.Ж. Этьена Ленуара. Год рождения этого изобретения — 1858. Это был двухтактовый электрический двигатель с карбюратором и искровым зажиганием. Топливом для устройства служил каменноугольный газ. Однако изобретатель не учел потребность в смазке и охлаждении своего двигателя, поэтому он работал очень недолго. В 1863 году Ленуар переделал свой двигатель — добавил недостающие системы и в качестве топлива ввел в использование керосин. Устройство было крайне несовершенным — сильно нагревался, неэффективно использовал смазку и топливо. Однако с помощью него ездили трехколесные автомобили, которые так же были далеки от совершенства.

В 1864 году был изобретен одноцилиндровый карбюраторный двигатель, работающий от сгорания нефтепродуктов. Автором изобретения стал Зигфрид Маркус, он же представил общественности транспортное средство, развивающее скорость 10 миль в час.

В 1873 году еще один инженер — Джордж Брайтон — смог сконструировать 2-х цилиндровый двигатель. Изначально он работал на керосине, а позже на бензине. Недостатком этого двигателя была излишняя массивность.

В 1876 году произошел рывок в индустрии создания двигателей внутреннего сгорания. Николас Отто впервые создал технически сложное устройство, которое эффективно преобразовывало энергию топлива в механическую энергию.

В 1883 году француз Эдуард Деламар разрабатывает чертеж двигателя, топливом для которого служит газ. Однако его изобретение существовало только в 1185 году, в истории автомобилестроения появляется громкое имя — Готтлиб Даймлер. Он смог не только изобрести, но и запустить в производство прототип современного газового двигателя — с вертикально расположенными цилиндрами и карбюратором. Это был первый компактный двигатель, который к тому же способствовал развитию приличной скорости перемещения. Параллельно с Даймлером над созданием двигателей и автомобилей работал Карл Бенц. В 1903 году предприятия Даймлера и Бенца объединились, дав начало полноценному предприятию автомобилестроения. Так началась новая эра, послужившая дальнейшему совершенствованию двигателя внутреннего сгорания.

2. Принцип работы ДВС

Как мы уже знаем, двигатель преобразует энергию рабочего тела в механическую. Рабочим телом в ДВС является смесь газов, состав которой в течение рабочего цикла изменяется. Энергия рабочего тела, которая сообщается газу при сгорании топлива, преобразуется в механическую в процессе расширения газа в рабочей полости.

Рабочая полость [Рис. 1] представляет собой замкнутый объем, величина которого изменяется с помощью рабочего органа — поршня, ротора и т.п. В зависимости от типа рабочего органа и характера его движения двигатели внутреннего сгорания подразделяются на несколько групп: поршневые с возвратно-поступательным движением поршня; свободно-поршневые с изменяемым хо дом поршня; роторные, в которых рабочий орган вращается относительно неподвижной оси или относительно оси, движущейся по круговой замкнутой орбите; двигатели с качающимися рабочими органами, в которых рабочие органы совершают возвратно вращательное колебательное движение и др.

Читайте также:  Chevrolet epica чип тюнинг

Рис. 1. Рабочая полость двигателя внутреннего сгорания

1. Коленчатый вал.

6. Впускной клапан.

7. Свеча зажигания.

8. Выпускной клапан.

К рабочей полости примыкают устройства (системы), предназначенные для подвода рабочего тела в рабочую полость и для его удаления из рабочей полости. Эти системы называют соответственно впускной и выпускной. Кроме впускной и выпускной систем для обеспечения работоспособности двигатель снабжен и другими системами: системой пуска, системой топливоподачи, системой зажигания, системой охлаждения, системой смазки и т.д.

В рабочей полости двигателя и его системах осуществляются в определенном порядке рабочие процессы, которые периодически повторяются. Совокупность процессов, происходящих в течение одного периода, называется рабочим циклом.

Рабочая полость в двигателе образована поверхностями цилиндра, головки цилиндра и днища поршня. Герметизация зазора между поршнем и цилиндром осуществлена с помощью поршневых колец, устанавливаемых в канавки на поршне. Поршень совершает возвратно-поступательное движение, которое с помощью кривошипно-шатунного механизма преобразуется во вращательное движение кривошипа. Крайнее верхнее положение поршня, соответствующее минимальному объему надпоршневой полости, называется верхней мертвой точкой (ВМТ), крайнее нижнее, соответствующее максимальному объему рабочей полости, — нижней мертвой точкой (НМТ), расстояние по оси цилиндра от ВМТ до НМТ — ходом поршня.

Перемещение поршня от ВМТ к НМТ и наоборот называется тактом. Если рабочий цикл совершается за 4 такта (два оборота кривошипа), то такие двигатели называются четырехтактными, если за два такта (один оборот коленчатого вала) — двухтактными. Протекание процессов в рабочей полости сопровождается, в зависимости от такта, изменением давления, температуры, состава и массы рабочего тела. В зависимости от определяющего процесса, протекающего в цилиндре четырехтактного двигателя, такты названы: такт впуска (наполнения); такт сжатия; такт сгорания — расширения; такт выпуска. В двухтактном двигателе процессы газообмена осуществляются в конце такта расширения и в начале такта сжатия путем подачи воздуха (топливно-воздушной смеси) к продувочным окнам (клапанам) при повышенном давлении, создаваемом нагнетателем.

Четырехтактный двигатель работает следующим образом: в первый такт свежая порция топливно-воздушной смеси всасывается в цилиндр через открытый впускной клапан; в следующий такт (такт сжатия) впускной и выпускной клапаны закрыты, и топливно-воздушная смесь сжимается в объёме; затем сжатое топливо воспламеняется свечой зажигания, расположенной над поршнем, при сгорании высвобождается энергия, которая воздействует на поршень, заставляя его двигаться вниз (такт сгорания — расширения); в завершающий такт (выпуска) открываются выпускные клапаны, и выхлопные газы, проходя через них, очищают цилиндр. По окончании 4-го такта цикл повторяется.

Рабочий процесс двухтактного двигателя в каждом из цилиндров совершается за один оборот коленчатого вала, то есть за два хода поршня. Такты сжатия и рабочего хода в двухтактном двигателе происходят так же, как и в четырёхтактном, но процессы очистки и наполнения цилиндра совмещены и осуществляются не в рамках отдельных тактов, а за короткое время, когда поршень находится вблизи нижней мёртвой точки.

4. Применение ДВС

Двигатель внутреннего сгорания является основным источником энергии на автомобилях различного типа и назначения. Несмотря на успехи развития двигателей других типов, они еще по своим основным характеристикам уступают двигателям внутреннего сгорания, и их применение пока носит экспериментальный характер. Мощность автомобильных двигателей внутреннего сгорания в настоящее время превышает 1500 кВт.

На железнодорожном транспорте поршневые паровые машины почти повсюду заменены электрическим приводом и приводом от двигателей внутреннего сгорания. В нашей стране около половины грузооборота осуществляется тепловозами с двигателями внутреннего сгорания. Известны попытки использования газовых турбин для привода локомотивов, однако они не получили заметного распространения. Единичная мощность тепловозных двигателей составляет около 4400 кВт.

В речном флоте двигатели внутреннего сгорания в настоящее время устанавливают на всех вновь вводимых в эксплуатацию судах.

В морском флоте двигатели внутреннего сгорания также являются основным источником энергии для небольших судов и большей части судов с энергетической установкой мощностью до 20 МВт.

В стационарной энергетике двигатели внутреннего сгорания широко используют на небольших электростанциях (мощностью в несколько киловатт), энергопоездах и аварийных энергоустановках.

Таким образом, двигатели внутреннего сгорания имеют большое значение в народном хозяйстве страны.

1. Дьяченко В.Г. Теория двигателей внутреннего сгорания. Учебник / В.Г. Дьяченко. — Харьков: ХНАДУ, 2009.- 500 с.

2. Орлин А.С. Двигатели внутреннего сгорания. Устройство и работа поршневых и комбинированных двигателей. Учебник А.С. Орлин.-4-е изд., М.: Машиностроение, 1990.-289 с.

Размещено на Allbest.ru

Подобные документы

История создания универсального парового двигателя. Понятие коэффициента полезного действия. Паровая машина Уатта. Принцип работы двухтактного двигателя внутреннего сгорания. Такт сжатия и такт рабочего хода. Рабочие циклы двухтактных двигателей.

презентация [985,6 K], добавлен 15.12.2014

Изучение конструкции и принципа действия двигателя внутреннего сгорания и его основных систем. Расчёт рабочего цикла с учётом особенностей потребителя для ряда режимов работы. Разработка рекомендаций для повышения основных характеристик двигателя.

Читайте также:  Тест драйв патриота 2019г

курсовая работа [7,6 M], добавлен 16.01.2012

Сущность и процесс запуска двигателя внутреннего сгорания, причины его широкого использования в транспорте. Принципы работы бензинового, дизельного, газового, роторно-поршневого двигателей. Функции стартера, трансмиссии, топливной и выхлопной систем.

презентация [990,4 K], добавлен 18.01.2012

Двигатель внутреннего сгорания (ДВС) – тепловой двигатель, в котором химическая энергия топлива, сгорающего в рабочей полости, преобразуется в механическую работу. История создания и развитие ДВС, строение и разновидности, принцип работы двигателей.

творческая работа [925,7 K], добавлен 06.03.2008

Применение на автомобилях и тракторах в качестве источника механической энергии двигателей внутреннего сгорания. Тепловой расчёт двигателя как ступень в процессе проектирования и создания двигателя. Выполнение расчета для прототипа двигателя марки MAN.

курсовая работа [169,7 K], добавлен 10.01.2011

Принцип работы и устройство двигателя

Двигатель внутреннего сгорания называется так потому что топливо воспламеняется непосредственно внутри его рабочей камеры, а не в дополнительных внешних носителях. Принцип работы ДВС основан на физическом эффекте теплового расширения газов, образующихся в процессе сгорания топливно-воздушной смеси под давлением внутри цилиндров двигателя. Выделяемая в этом процессе энергия преобразуется в механическую работу.


В процессе эволюции ДВС выделились несколько типов двигателей, их классификация и общее устройство:

  • Поршневые двигатели внутреннего сгорания. В них рабочая камера находится внутри цилиндров, а тепловая энергия преобразуется в механическую работу посредством кривошипно-шатунного механизма, передающего энергию движения на коленчатый вал. Поршневые моторы делятся, в свою очередь, на:
    • карбюраторные, в которых воздушно-топливная смесь формируется в карбюраторе, впрыскивается в цилиндр и воспламеняется там искрой от свечи зажигания;
    • инжекторные, в которых смесь подаётся напрямую во впускной коллектор, через специальные форсунки, под контролем электронного блока управления, и также воспламеняется посредством свечи;
    • дизельные, в которых воспламенение воздушно-топливной смеси происходит без свечи, посредством сжатия воздуха, который от давления нагревается до температуры, превышающей температуру горения, а топливо впрыскивается в цилиндры через форсунки.
  • Роторно-поршневые двигатели внутреннего сгорания. Здесь тепловая энергия преобразуется в механическую работу посредством вращения рабочими газами ротора специальной формы и профиля. Ротор движется по «планетарной траектории» внутри рабочей камеры, имеющей форму «восьмёрки», и выполняет функции как поршня, так и ГРМ (газораспределительного механизма), и коленчатого вала.
  • Газотурбинные двигатели внутреннего сгорания. Особенности их устройства заключаются в преображении тепловой энергии в механическую работу с помощью вращения ротора со специальными клиновидными лопатками, который приводит в движение вал турбины.

Далее рассматриваются только поршневые двигатели, так как только они получили широкое распространение в автомобильной промышленности. Основные причины тому: надежность, стоимость производства и обслуживания, высокая производительность.

Устройство двигателя внутреннего сгорания

Первые поршневые ДВС имели лишь один цилиндр небольшого диаметра. В дальнейшем, для увеличения мощности сначала увеличивали диаметр цилиндра, а потом и их количество. Постепенно двигатели внутреннего сгорания приняли привычный нам вид. “Сердце” современного автомобиля может иметь до 12 цилиндров.

Наиболее простым является двигатель с рядным расположением цилиндров. Однако, с увеличением количества цилиндров растет и линейный размер двигателя. Поэтому появился более компактный вариант расположения — V-образный. При таком варианте цилиндры расположены под углом друг к другу (в пределах 180-ти градусов). Обычно используется для 6-цилиндровых двигателей и более.

Одна из основных частей двигателя — цилиндр (6), в котором находится поршень (7), соединенный через шатун (9) с коленчатым валом (12). Прямолинейное движение поршня в цилиндре вверх и вниз шатун и кривошип преобразуют во вращательное движение коленчатого вала.

На конце вала закреплен маховик (10), назначение которого придавать равномерность вращению вала при работе двигателя. Сверху цилиндр плотно закрыт головкой блока цилиндров (ГБЦ), в которой находятся впускной (5) и выпускной (4) клапаны, закрывающие соответствующие каналы.

Клапаны открываются под действием кулачков распределительного вала (14) через передаточные механизмы (15). Распределительный вал приводится во вращение шестернями (13) от коленчатого вала.
Для уменьшения потерь на преодоление трения, отвод теплоты, предотвращения задиров и быстрого износа трущиеся детали смазывают маслом. В целях создания нормального теплового режима в цилиндрах двигатель должен охлаждаться.

Но главная задача – заставить работать поршень, ведь именно он является главной движущей силой. Для этого в цилиндры должны подаваться горючая смесь в определенной пропорции (у бензиновых) или отмеренные порции топлива в строго определенный момент под высоким давлением (у дизелей). Топливо воспламеняется в камере сгорания, отбрасывает поршень с большой силой вниз, тем самым приводя его в движение.

Принцип работы двигателя

Из-за низкой производительности и высокого расхода топлива 2-тактных двигателей практически все современные двигатели производят с 4-тактными циклами работы:

  1. Впуск топлива;
  2. Сжатие топлива;
  3. Сгорание;
  4. Вывод отработанных газов за пределы камеры сгорания.

Точка отсчета — положение поршня вверху (ВМТ — верхняя мертвая точка). В данный момент впускное отверстие открывается клапаном, поршень начинает движение вниз и засасывает топливную смесь в цилиндр. Это первый такт цикла.

Читайте также:  Если сломался лодочный мотор

Во время второго такта поршень достигает самой нижней точки (НМТ — нижняя мертвая точка), при этом впускное отверстие закрывается, поршень начинает движение вверх, из-за чего топливная смесь сжимается. При достижении поршнем максимальной верхней точки топливная смесь сжата до максимума.

Третий этап – это поджигание сжатой топливной смеси с помощью свечи, которая испускает искру. В результате горючий состав взрывается и толкает поршень с большой силой вниз.

На заключительном этапе поршень достигает нижней границы и по инерции возвращается к верхней точке. В это время открывается выпускной клапан, отработанная смесь в виде газа выходит из камеры сгорания и через выхлопную систему попадает на улицу. После этого цикл, начиная с первого этапа, повторяется снова и продолжается в течение всего времени работы двигателя.

Описанный выше способ является универсальным. По такому принципу построена работа практически всех бензиновых моторов. Дизельные двигатели отличаются тем, что там нет свеч зажигания – элемента, который поджигает топливо. Детонация дизельного топлива осуществляется благодаря сильному сжатию топливной смеси. При такте «впуск» в цилиндры дизеля поступает чистый воздух. Во время такта «сжатие» воздух нагревается до 600О С. В конце этого такта в цилиндр впрыскивается определенная порция топлива, которое самовоспламеняется.

Системы двигателя

Вышеописанное представляет собой БЦ (блок цилиндров) и КШМ (кривошипно-шатунный механизм). Помимо этого современный ДВС состоит и из других вспомогательных систем, которые для удобства восприятия группируют следующим образом:

  1. ГРМ (механизм регулировки фаз газораспределения);
  2. Система смазки;
  3. Система охлаждения;
  4. Система подачи топлива;
  5. Выхлопная система.

ГРМ — газораспределительный механизм

Чтобы в цилиндр поступало нужное количество топлива и воздуха, а продукты сгорания вовремя удалялись из рабочей камеры, в ДВС предусмотрен механизм, называемый газораспределительным. Он отвечает за открытие и закрытие впускных и выпускных клапанов, через которые в цилиндры поступает топливо-воздушная горючая смесь и удаляются выхлопные газы. К деталям ГРМ относятся:

  • Распределительный вал;
  • Впускные и выпускные клапаны с пружинами и направляющими втулками;
  • Детали привода клапанов;
  • Элементы привода ГРМ.

ГРМ приводится в действие от коленчатого вала двигателя автомобиля. С помощью цепи или ремня вращение передается на распределительный вал, который посредством кулачков или коромысел через толкатели нажимает на впускной или выпускной клапан и по очереди открывает и закрывает их.

Система смазки

В любом моторе есть множество трущихся деталей, которые необходимо постоянно смазывать, чтобы уменьшить потери мощности на трение и избежать повышенного износа и заклинивания. Для этого существует система смазки. Попутно с ее помощью решается еще несколько задач: защита деталей двигателя внутреннего сгорания от коррозии, дополнительное охлаждение деталей мотора, а также удаление продуктов износа из мест соприкосновения трущихся частей. Систему смазки двигателя автомобиля образуют:

  • Масляный картер (поддон);
  • Насос подачи масла;
  • Масляный фильтр с редукционным клапаном;
  • Маслопроводы;
  • Масляный щуп (индикатор уровня масла);
  • Указатель давления в системе;
  • Маслоналивная горловина.

Система охлаждения

Во время работы мотора его детали соприкасаются с раскаленными газами, которые образуются при сгорании топливо-воздушной смеси. Чтобы детали двигателя внутреннего сгорания не разрушались из-за чрезмерного расширения при нагреве, их необходимо охлаждать. Охладить мотор автомобиля можно с помощью воздуха или жидкости. Современные моторы имеют, как правило, жидкостную схему охлаждения, которую образуют следующие части:

  • Рубашка охлаждения двигателя;
  • Насос (помпа);
  • Термостат;
  • Радиатор;
  • Вентилятор;
  • Расширительный бачок.

Система подачи топлива

Система питания для двигателей внутреннего сгорания с воспламенением от искры и от сжатия отличаются друг от друга, хотя и имеют ряд общих элементов. Общими являются:

  • Топливный бак;
  • Датчик уровня топлива;
  • Фильтры очистки топлива — грубой и тонкой;
  • Топливные трубопроводы;
  • Впускной коллектор;
  • Воздушные патрубки;
  • Воздушный фильтр.

В обеих системах имеются топливные насосы, топливные рампы, форсунки подачи топлива, сам принцип подачи одинаков: топливо из бака с помощью насоса через фильтры подается в топливную рампу, из которой попадает в форсунки. Но если в большинстве бензиновых двигателей внутреннего сгорания форсунки подают его во впускной коллектор мотора автомобиля, то в дизельных оно подается непосредственно в цилиндр, и уже там смешивается с воздухом.

Выхлопная система

Система выхлопа предназначена для отвода отработанных газов из цилиндров двигателя автомобиля. Основные детали, ее составляющие:

  • Выпускной коллектор;
  • Приемная труба глушителя;
  • Резонатор;
  • Глушитель;
  • Выхлопная труба.

В современных двигателях внутреннего сгорания выхлопная конструкция дополнена устройствами нейтрализации вредных выбросов. Она состоит из каталитического нейтрализатора и датчиков, сообщающихся с блоком управления двигателем. Выхлопные газы из выпускного коллектора через приемную трубу попадают в каталитический нейтрализатор, затем через резонатор в глушитель. Далее через выхлопную трубу они выбрасываются в атмосферу.

Оцените статью