- Ракетные двигатели
- Химические ракетные двигатели (ХРД)
- История создания
- Устройство и принцип работы химических ракетных двигателей
- Плюсы и минусы химических РД, их сфера применения
- Достоинствами твердотопливных РД являются:
- Недостатки РДТТ:
- Достоинства жидкостных РД:
- Недостатки ЖРД:
- Ядерные ракетные двигатели (ЯРД)
- История создания
- Устройство и принцип действия
- Преимущества и недостатки ЯРД
- Электрические ракетные двигатели (ЭРД)
- История создания
- Устройство и принцип работы
- Преимущества и недостатки ЭРД, сфера использования
- Среди преимуществ ЭРД:
- Недостатки:
- Ракетный двигатель: современные возможности покорения космоса
- Первые шаги человека в мир ракетных технологий
- Типы ракетных двигателей: конструкция, схема и устройство
- Современные типы ракетных двигателей
Ракетные двигатели
Что первое приходит на ум при словосочетании «ракетные двигатели»? Конечно же, загадочный космос, межпланетные полеты, открытие новых галактик и манящее сияние далеких звезд. Во все времена небо притягивало к себе человека, оставаясь при этом неразгаданной тайной, но создание первой космической ракеты и ее запуск открыли человечеству новые горизонты исследований.
Ракетные двигатели по своей сути – это обычные реактивные двигатели с одной немаловажной особенностью: для создания реактивной тяги в них не используется атмосферный кислород в качестве окислителя топлива. Все, что нужно для его работы, находится либо непосредственно в его корпусе, либо в системах подачи окислителя и топлива. Именно эта особенность и дает возможность использовать ракетные двигатели в открытом космосе.
Видов ракетных двигателей очень много и все они разительно отличаются между собой не только особенностями конструкции, но и принципом работы. Именно поэтому каждый вид нужно рассматривать отдельно.
Среди основных рабочих характеристик ракетных двигателей особое внимание уделяется удельному импульсу – отношению величины реактивной тяги к массе расходуемого за единицу времени рабочего тела. Значение удельного импульса отображает эффективность и экономичность двигателя.
Химические ракетные двигатели (ХРД)
Этот тип двигателей на сегодняшний день является единственным, который массово используется для выведения в открытый космос космических аппаратов, кроме того, он нашел применение и в военной промышленности. Химические двигатели делятся на твердо- и жидкотопливные в зависимости от агрегатного состояния ракетного топлива.
Виды химических двигателей
История создания
Первыми ракетными двигателями были твердотопливные, а появились они несколько веков назад в Китае. С космосом их тогда мало что связывало, зато с их помощью можно было запускать военные ракеты. В качестве топлива использовался порошок, по составу напоминающий порох, только процентное соотношение его составляющих было изменено. В результате при окислении порошок не взрывался, а постепенно сгорал, выделяя тепло и создавая реактивную тягу. Такие двигатели с переменным успехом дорабатывались, совершенствовались и улучшались, но их удельный импульс все равно оставался малым, то есть конструкция была неэффективной и неэкономичной. Вскоре появились новые виды твердого топлива, позволяющие получить больший удельный импульс и развивать большую тягу. Над его созданием в первой половине ХХ века трудились ученые СССР, США и Европы. Уже во второй половине 40-х годов был разработан прототип современного топлива, используемого и сейчас.
Ракетный двигатель РД — 170 работает на жидком топливе и окислителе.
Жидкостные ракетные двигатели – это изобретение К.Э. Циолковского, который предложил их в качестве силового агрегата космической ракеты в 1903 году. В 20-х годах работы по созданию ЖРД начали проводиться в США, в 30-хх годах – в СССР. Уже к началу Второй мировой войны были созданы первые экспериментальные образцы, а после ее окончания ЖРД стали выпускаться серийно. Использовались они в военной промышленности для оснащения баллистических ракет. В 1957 году впервые в истории человечества был запущен советский искусственный спутник. Для его запуска использовалась ракета, оснащенная РЖД.
Устройство и принцип работы химических ракетных двигателей
Твердотопливный двигатель вмещает в своем корпусе топливо и окислитель в твердом агрегатном состоянии, причем контейнер с топливом – это одновременно и камера сгорания. Топливо обычно имеет форму стержня с центральным отверстием. В процессе окисления стержень начинает сгорать от центра к периферии, а газы, полученные в результате сгорания, выходят через сопло, образуя тягу. Это самая простая конструкция среди всех ракетных двигателей.
В жидкостных РД топливо и окислитель находятся в жидком агрегатном состоянии в двух раздельных резервуарах. По каналам подачи они попадают в камеру сгорания, где смешиваются и происходит процесс горения. Продукты сгорания выходят через сопло, образуя тягу. В качестве окислителя обычно используется жидкий кислород, а топливо может быть разным: керосин, жидкий водород и т.д.
Плюсы и минусы химических РД, их сфера применения
Достоинствами твердотопливных РД являются:
- простота конструкции;
- сравнительная безопасность в плане экологии;
- невысокая цена;
- надежность.
Недостатки РДТТ:
- ограничение по времени работы: топливо сгорает очень быстро;
- невозможность перезапуска двигателя, его остановки и регулирования тяги;
- небольшой удельный вес в пределах 2000-3000 м/с.
Анализируя плюсы и минусы РДТТ, можно сделать вывод, что их использование оправдано только в тех случаях, когда нужен силовой агрегат средней мощности, достаточно дешевый и простой в исполнении. Сфера их использования – баллистические, метеорологические ракеты, ПЗРК, а также боковые ускорители космических ракет (ими оснащаются американские ракеты, в советских и российских ракетах их не использовали).
Достоинства жидкостных РД:
- высокий показатель удельного импульса (порядка 4500 м/с и выше);
- возможность регулирования тяги, остановки и перезапуска двигателя;
- меньший вес и компактность, что дает возможность выводить на орбиту даже большие многотонные грузы.
Недостатки ЖРД:
- сложная конструкция и пуско-наладочные работы;
- в условиях невесомости жидкости в баках могут хаотично перемещаться. Для их осаждения нужно использовать дополнительные источники энергии.
Сфера применения ЖРД – это в основном космонавтика, так как для военных целей эти двигатели слишком дорогие.
Несмотря на то, что пока химические РД – единственные способные обеспечить вывод ракет в открытый космос, их дальнейшее усовершенствование практически невозможно. Ученые и конструкторы убеждены, что предел их возможностей уже достигнут, а для получения более мощных агрегатов с большим удельным импульсом необходимы другие источники энергии.
Ядерные ракетные двигатели (ЯРД)
Этот тип РД в отличие от химических вырабатывает энергию не при сгорании топлива, а в результате нагревания рабочего тела энергией ядерных реакций. ЯРД бывают изотопными, термоядерными и ядерными.
История создания
Конструкция и принцип работы ЯРД были разработаны еще в 50-хх годах. Уже в 70-хх годах в СССР и США были готовы экспериментальные образцы, которые успешно проходили испытания. Твердофазный советский двигатель РД-0410 с тягой в 3,6 тонны испытывался на стендовой базе, а американский реактор «NERVA» должен был устанавливаться на ракету «Сатурн V» до того, как спонсирование лунной программы было остановлено. Параллельно велись работы и над созданием газофазных ЯРД. Сейчас действуют научные программы по разработке ядерных РД, проводятся эксперименты на космических станциях.
Таким образом, действующие модели ядерных ракетных двигателей уже есть, но пока ни один из них так и не был задействован вне лабораторий или научных баз. Потенциал таких двигателей довольно высокий, но и риск, связанный с их использованием, тоже немалый, так что пока они существуют только в проектах.
Устройство и принцип действия
Ядерные ракетные двигатели бывают газо-, жидко- и твердофазными в зависимости от агрегатного состояния ядерного топлива. Топливо в твердофазных ЯРД – это ТВЭЛы, такие же, как в ядерных реакторах. Они находятся в корпусе двигателя и в процессе распада делящегося вещества выделяют тепловую энергию. Рабочее тело – газообразный водород или аммиак – контактируя с ТВЭЛом, поглощает энергию и нагревается, увеличиваясь в объеме и сжимаясь, после чего выходит через сопло под высоким давлением.
Принцип работы жидкофазного ЯРД и его устройство аналогично твердофазным, только топливо находится в жидком состоянии, что позволяет увеличить температуру, а значит и тягу.
Газофазные ЯРД работают на топливе в газообразном состоянии. Обычно в них используется уран. Газообразное топливо может удерживаться в корпусе электрическим полем или же находится в герметичной прозрачной колбе – ядерной лампе. В первом случае возникает контакт рабочего тела с топливом, а также частичная утечка последнего, поэтому кроме основной массы топлива в двигателе должен быть предусмотрен его запас для периодического пополнения. В случае с ядерной лампой утечки не происходит, а топливо полностью изолировано от потока рабочего тела.
Преимущества и недостатки ЯРД
Ядерные ракетные двигатели имеют огромное преимущество в сравнении с химическими – это высокий показатель удельного импульса. Для твердофазных моделей его величина составляет 8000-9000 м/с, для жидкофазных – 14000 м/с, для газофазных – 30000 м/с. Вместе с тем, их использование влечет за собой заражение атмосферы радиоактивными выбросами. Сейчас ведутся работы по созданию безопасного, экологичного и эффективного ядерного двигателя, и главным «претендентом» на эту роль является газофазный ЯРД с ядерной лампой, где радиоактивное вещество находится в герметичной колбе и не выходит наружу с реактивным пламенем.
Электрические ракетные двигатели (ЭРД)
Еще один потенциальный конкурент химических РД – электрический РД, работающий за счет электрической энергии. ЭРД может быть электротермическим, электростатическим, электромагнитным или импульсным.
История создания
Первый ЭРД был сконструирован в 30-х годах советским конструктором В.П. Глушко, хотя идея создания такого двигателя появилась еще в начале ХХ века. В 60-х годах ученые СССР и США активно работали над созданием ЭРД, и уже в 70-х годах первые образцы начали использоваться в космических аппаратах в качестве двигателей управления.
Устройство и принцип работы
Электроракетная двигательная установка состоит из самого ЭРД, строение которого зависит от его типа, систем подачи рабочего тела, управления и электропитания. Электротермический РД нагревает поток рабочего тела за счет тепла, выделяемого нагревательным элементом, или в электрической дуге. В качестве рабочего тела используется гелий, аммиак, гидразин, азот и другие инертные газы, реже – водород.
Электростатические РД делятся на коллоидные, ионные и плазменные. В них заряженные частицы рабочего тела ускоряются за счет электрического поля. В коллоидных или ионных РД ионизация газа обеспечивается ионизатором, высокочастотным электрическим полем или газоразрядной камерой. В плазменных РД рабочее тело – инертный газ ксенон – проходит через кольцевой анод и попадает в газоразрядную камеру с катод-компенсатором. При высоком напряжении между анодом и катодом вспыхивает искра, ионизирующая газ, в результате чего получается плазма. Положительно заряженные ионы выходят через сопло с большой скоростью, приобретенной за счет разгона электрическим полем, а электроны выводятся наружу катодом-компенсатором.
Электромагнитные РД имеют свое магнитное поле – внешнее или внутреннее, которое ускоряет заряженные частицы рабочего тела.
Импульсные РД работают за счет испарения твердого топлива под действием электрических разрядов.
Преимущества и недостатки ЭРД, сфера использования
Среди преимуществ ЭРД:
- высокий показатель удельного импульса, верхний предел которого практически не ограничен;
- малый расход топлива (рабочего тела).
Недостатки:
- высокий уровень потребления электроэнергии;
- сложность конструкции;
- небольшая тяга.
На сегодняшний день использование ЭРД ограничено их установкой на космические спутники, а в качестве источников электроэнергии для них применяются солнечные батареи. Вместе с тем именно эти двигатели могут стать теми силовыми установками, которые дадут возможность исследовать космос, поэтому работы по созданию их новых моделей активно ведутся во многих странах. Именно эти силовые установки чаще всего упоминали фантасты в своих произведениях, посвященных покорению космоса, их же можно встретить и в научно-фантастических фильмах. Пока именно ЭРД является надеждой на то, что люди все же смогут путешествовать к звездам.
Ракетный двигатель: современные возможности покорения космоса
Среди технических достижений человечества ракетные двигатели занимают особенно место. Устройства, созданные умом человека и его руками, являются не только вершиной научно-технического прогресса. Благодаря этим сложнейшим машинам – человечество сумело вырваться из объятий нашей планеты и выйти на просторы космоса.
Это сегодня в распоряжении человека самые мощнейшие ракетные двигатели в мире, способные развивать тягу в сотни тонна сил. Начиналась ракетная гонка тысячи лет назад, когда в древнем Китае умельцы сумели создать первые пороховые заряды для фейерверка. Пройдет огромный промежуток времени прежде чем будет создан первый двигатель на реактивной тяге в прямом смысле этого слова.
Отбросив в сторону порох и получив реактивную тягу на жидком топливе, человек перешел к строительству реактивных самолетов и получил возможность создавать более мощные образцы ракетной техники.
Первые шаги человека в мир ракетных технологий
Человечество уже достаточно долго знакомо с реактивным движением. Еще древние греки пытались использовать механические устройства, приводимые в движение сжатым воздухом. Позже уже стали появляться устройства и механизмы, совершающие полет за счет сгорания порохового заряда. Созданные в Китае, а затем появившиеся в Западной Европе первые примитивные ракеты были далеки от совершенства. Однако уже в те далекие годы стала обретать первые очертания теория ракетного двигателя. Изобретатели и ученые пытались найти объяснение процессам, которые возникали при горении пороха, обеспечивая стремительный полет физического, материального тела. Реактивное движение все больше и больше интересовало человека, открывая новые горизонты в развитии техники.
История с изобретением пороха дала новый импульс в развитии ракетной техники. Первые представления о том, что такое тяга реактивного двигателя, формировались в процессе длительных опытов и экспериментов. Работы и изыскания велись с использованием дымного пороха. Оказалось, что процесс горения пороха вызывает большое количество газов, которые обладают огромным рабочим потенциалом. Огнестрельное оружие натолкнуло ученых на идею использовать энергию пороховых газов с большей эффективностью.
Использовать другое топливо для создания реактивного движения не представлялось возможным в силу несовершенства технической базы. Именно пороховой ракетный двигатель стал первым твердотопливным устройством, прообразом современных ракетных двигателей, стоящих на службе человека.
Вплоть до начала XX века ракетная техника пребывала в первобытном состоянии, основываясь на самых примитивных представлениях о реактивном движении. Только в конце XIX века предпринимаются первые попытки объяснить с научной точки зрения процессы, способствующие возникновению реактивного движения. Оказалось, что с увеличением заряда увеличивалась сила тяги, которая являлась основным фактором работающего двигателя. Это соотношение объясняло, как работает ракетный двигатель и в каком направлении следует идти, чтобы добиться большей эффективности запущенного устройства.
Первенство в этой области принадлежит российским ученым. Николай Тихомиров уже в 1894 году пытался математически объяснить теорию реактивного движения и создать математическую модель ракетного (реактивного) двигателя. Огромный вклад в развитие ракетной техники внес выдающийся ученый XX столетия Константин Циолковский. Результатом его трудов стали основы теории ракетных двигателей, которыми в дальнейшем пользовался любой конструктор ракетных двигателей. Все последующие разработки, создание ракетной техники шли с использование теоретической части, созданной российскими учеными.
Циолковский, поглощенный теорией космических полетов, впервые озвучил идею использовать вместо твердых видов топлива жидкие компоненты — водород и кислород. С его подачи появился жидкостный реактивный двигатель, который сегодня является самым эффективным и работоспособным типом двигателя. Все последующие разработки основных моделей ракетных двигателей, которые использовались при запуске ракет, в основной своей массе работали на жидком топливе, где окислителем мог быть кислород, использовались другие химические элементы.
Типы ракетных двигателей: конструкция, схема и устройство
Глядя на схему ракетного двигателя и на промышленные готовые изделия, трудно назвать это вершиной технического гения. Даже такое совершенное устройство, каким является российский ракетный двигатель Рд-180, на первый взгляд выглядит достаточно прозаично. Однако главное в этом устройстве — используемая технология и параметры, которыми обладает это чудо техники. Суть ракетного двигателя – обычный реактивный двигатель, в котором за счет сгорания топлива создается рабочее тело, обеспечивающее необходимое тяговое усилие. Единственное отличие заключается в виде топлива и в условиях, при которых происходит сгорание топлива и образование рабочего тела. Для того чтобы двигатель мог развить максимальную тягу в первые секунды своей работы, требуется много топлива.
В реактивных двигателях сгорание компонентов топлива осуществляется при участии атмосферного воздуха. Прямоточный реактивный двигатель сегодня является основной рабочей лошадкой, где авиационный керосин в камере сгорания сгорает вместе с кислородом, образуя на выходе мощный реактивный поток газов. Ракетный двигатель – это полностью автономная система, где реактивная тяга создается при сгорании твердого или жидкого топлива без участия атмосферного кислорода. К примеру, жидкостный ракетный двигатель работает на топливе, где окислителем является один из химических элементов, подаваемый в камеру сгорания. Твердотопливные ракеты работают на твердых видах топлива, которые находятся в одной емкости. При их сгорании выделяется огромное количество энергии, которая под высоким давлением из камеры сгорания выходит наружу.
Перед началом работы, масса топлива составляет 90% массы ракетного двигателя. По мере расхода топлива его изначальный вес уменьшается. Соответственно растет тяга ракетного двигателя, обеспечивающая выполнение полезной работы по переносу груза.
Процессы горения, происходящие внутри камеры сгорания ракетного двигателя без участия воздуха, делают использование ракетных двигателей идеальными устройствами для полетов на большие высоты и в космическое пространство. Среди всех ракетных двигателей, с которыми работает современная ракетная техника, следует выделить следующие типы:
- твердотопливные ракетные двигатели (ТРД);
- жидкостные (ЖРД);
- химические ракетные двигатели (ХРД);
- ионный ракетный двигатель;
- электрический ракетный двигатель;
- гибридный ракетный двигатель (ГРД).
К отдельному типу относятся детонационный ракетный двигатель (импульсный), который в основном устанавливается на космических аппаратах, путешествующих в космическом пространстве.
В зависимости от эксплуатации и технических возможностей устройства делятся на стартовые ракетные двигатели и рулевые. К первому типу относятся самые мощные ракетные двигатели, обладающие огромной тягой и способные преодолеть силу земного притяжения. Самые известные представители этого типа — советский двигатель, жидкостный РД-170/171, развивающий тягу во время старта ракеты в 700 тс. Создаваемое в камере сгорания давление имеет колоссальные значения 250 кгс/см2. Этот тип двигателя создавался для ракеты-носителя «Энергия». В качестве топлива для работы установки используется смесь керосина и кислорода.
Советская техника оказалась мощнее знаменитого американского устройства F-1, обеспечивающего полет ракет американской лунной программы «Аполлон».
Стартовые ракетные двигатели или маршевые могут использоваться в качестве двигательной установки для первой и второй ступени. Именно они обеспечивают заданную скорость и стабильный полет ракеты по заданной траектории и могут быть представлены всеми типами ракетных двигателей, которые существуют на сегодняшний день. Последний тип — рулевые двигатели — применяется для осуществления маневра ракетной техники как во время маршевого полета в слоях атмосферы, так и во время корректировки космических аппаратов в космосе.
На сегодняшний день только несколько государств обладают техническими возможностями для изготовления маршевых ракетных двигателей большой мощности, способных вывести в космос большие объемы груза. Такие устройства выпускаются в России, в США, в Украине и в странах Европейского Союза. Российский ракетный двигатель РД -180, украинские двигатели ЖРД 120 и ЖРД 170 являются сегодня основными двигательными установками для ракетной техники, используемой для освоения космических программ. Ракетными двигателями России сегодня оснащаются американские ракеты-носители «Сатурн» и «Антарес».
Наиболее распространенными двигателями, с которыми сегодня работает современная техника, являются твердотопливные и жидкостные ракетные двигатели. Первый тип является наиболее простым в эксплуатации. Второй тип — жидкостные ракетные двигатели представляют собой мощные и сложные устройства закрытого цикла, в которых основным компонентами топлива являются химические элементы. К этим двум типам двигательных установок относятся химические РД, которые отличаются только агрегатным состоянием топливных компонентов. Однако эксплуатация этого типа техники происходит в экстремальных условиях, с соблюдением высоких мер безопасности. Основным топливом для этого типа двигателей является водород и углерод, которые взаимодействуют с кислородом, выполняющим функцию окислителя.
Для химических реактивных двигателей в качестве компонентов топлива используются керосин, спирт и другие легкогорючие вещества. Окислителем такой смеси служат фтор, хлор или кислород. Топливная масса для работы химических двигателей является очень токсичной и опасной для человека.
В отличие от своих твердотопливных собратьев, рабочий цикл которых слишком быстр и неконтролируем, двигатели на жидком топливе позволяют регулировать свою работу. Окислитель находится в отдельной емкости и подается в камеру сгорания в ограниченном количестве, где вместе с другими компонентами образуется рабочее тело, выходя через сопло, создавая тягу. Такая особенность двигательных установок позволяет не только регулировать тягу двигателя, но и соответственно следить за скоростью полета ракеты. Лучший ракетный двигатель, который сегодня используется для старта космических ракет — российский РД -180. Это устройство обладает высокими техническими характеристиками и экономично, делая эго эксплуатацию рентабельной.
Оба типа двигателей имеют свои преимущества и недостатки, которые нивелируются сферой их использования и техническими задачами, стоящими перед создателями ракетной техники. Последней из когорты химических двигателей является криогенный метановый ракетный двигатель SpaceX Raptor, создаваемый для ракеты, способной совершать межпланетные перелеты.
Современные типы ракетных двигателей
Главной рабочей характеристикой ракетных двигателей является удельный импульс. Эта величина определяется соотношением создаваемой тяги к количеству топлива, расходуемого за единицу времени. Именно по этому параметру сегодня определяется эффективность ракетной техники, ее экономическая целесообразность. Современные технологии направлены на достижение высоких значений этого параметра, чтобы получить высокий показатель удельного импульса. Может быть, чтобы добиться быстрого и бесконечного движения космического аппарата придется использовать другие виды топлива.
Химические ракетные двигатели как твердотопливные, так и жидкостные, достигли пика своего развития. Несмотря на то, что эти типы двигателей являются основными для баллистических и космических ракет, их последующее усовершенствование проблематично. Сегодня ведутся работы, чтобы использовать другие источники энергии.
Среди приоритетных направлений можно выделить два:
- ядерные ракетные двигатели (ионные);
- электрические ракетные двигатели (импульсные).
Оба типа выглядят приоритетными в сфере строительства космических кораблей. Несмотря на недостатки, которыми обладают сегодня первые опытные образцы этих двигательных установок, запускать в космос их будет значительно дешевле и эффективнее.
В отличие от химических двигателей, на которых человечество въехало в космическую эру, ядерные двигатели дают необходимый импульс не за счет сгорания жидкого или твердого топлива. В качестве рабочего тела выступают разогретые до газообразного состояния водород или аммиак. Разогреваемые за счет контакта с ядерным топливом газы под высоким давлением покидают камеру сгорания. Удельный импульс у этих типов двигателей достаточно высок. Такие установки еще называют ядерными и изотопными. Их мощность оценивается достаточно высоко. Работа ЯРД со старта на Земле считается невозможной ввиду высокой опасности радиоактивного заражения местности и обслуживающего персонала стартового комплекса. Такие двигатели можно будет использовать только во время маршевого полета в просторах космоса.
Считается, что потенциал ЯРД достаточно высокий, однако отсутствие эффективных способов контроля термоядерной реакции делает их использование в нынешних условиях довольно проблематичным и опасным.
Следующий тип — электрические двигатели ЭРД — являются экспериментальными от начала и до конца. Рассматривается сразу четыре типа этой двигательной установки: электромагнитный, электростатический, электротермический и импульсный. Наибольший интерес из этой группы представляет электростатические устройства, которые еще принято называть ионными или коллоидными. В этой установке рабочее тело(как правило, это инертный газ) нагревается электрически полем до состояния плазмы. Ионные ракетные двигатели среди всех остальных обладают самым высоким показателем удельного импульса, однако еще рано говорить о практической реализации проекта.
Несмотря на высокие показатели импульса, данная разработка имеет существенные недостатки. Двигатель требует для работы постоянные источники электроэнергии, способные обеспечить бесперебойную подачу электричества в больших объемах. Соответственно, у такого двигателя не может быть большой тяга, что сводит усилия конструкторов по созданию эффективных и экономичных космических аппаратов к слабым результатам.
Ракетный двигатель, которым сегодня располагает человечество, обеспечил выход человека в космос, дал возможность вести исследования космического пространства на больших расстояниях. Однако технические пределы, которых достигли используемые устройства, создают предпосылки для активизации работ в других направлениях. Возможно, в обозримом будущем космос будут бороздить корабли с ядерными силовыми установками, или мы окунемся в мир плазменных ракетных двигателей, совершающих полеты со скоростью, близкой к скорости света.