Состав привода
Привод — энергосиловое устройство, приводящее в движение машину.
Привод состоит из:
1. источника энергии (силовой установки)
2. передаточного устройства (трансмиссии)
3. системы управления для включения и отключения механизмов машины, а
также для изменения режимов их движения.
Силовая установка — та часть машины, которая приводит в движение механизмы машины. Она представляет собой агрегат, состоящий из двигателя и вспомогательных систем: питания (топливный бак, фильтры, трубопроводы), охлаждения (водяной насос, радиатор трубопроводов), управления (рычаги управления режимом двигателя, охлаждения), смазки. К сборочным единицам силовой установки относят также подмоторную раму.
Классификация привода.
1. По конструкции и числу силовых установок.
1.1. Приводы одномоторные. В одномоторном приводе одна силовая установка приводит в движение все механизмы. При таком приводе включают и выключают отдельные механизмы машины при помощи различных конструкций муфт, чаще всего фрикционных. Достоинством одномоторного привода является то, что масса этого привода меньше, чем суммарная масса приводов многомоторного привода, а изготовить его проще и дешевле. Недостаток одномоторного привода состоит в том, что при нем требуется большое количество трансмиссий, чтобы осуществить передачу движения отдельным механизмам. Кроме того, при одномоторном приводе нельзя получить независимое распределение мощности между приводимыми в движение механизмами.
1.2 Приводы многомоторные при многомоторном приводе каждый механизм или группа их приводятся в движение отдельными двигателями. Чаще всего на машинах с многомоторным приводом двигатель внутреннего сгорания приводит в движение электрогенератор, который питает электроэнергией электроприводы отдельных механизмов. Двигатель внутреннего сгорания может приводить в движение гидронасос, который подает жидкость к гидродвигателям отдельных механизмов. В многомоторном приводе можно регулировать работу отдельных механизмов независимо друг от друга, значительно сократить количество трансмиссий, легче осуществить автоматизацию. Эти преимущества позволяют все более широко применять машины с многомоторным приводом, особенно в связи с усовершенствованием конструкции гидропривода, при котором масса многомоторных приводов приближается к массе одномоторного привода вместе с трансмиссиями.
1.3. Привод от ДВС. В ДВС химическая энергия топлива, сгорающего в рабочих полостях цилиндров, преобразуется в механическую энергию.
1.4. Электрический привод.
1.5. Дизель-электрический привод.
2. По конструкции трансмиссии.
На механических участках трансмиссий этих приводов механическое движение передается без его преобразования в другие формы энергии.
На участках трансмиссий этих приводов вращательное движение выходного вала двигателя силовой установки с помощью электрогенераторов, гидравлических или пневматических насосов преобразуется соответственно в электрическую энергию, энергию движения рабочей жидкости или энергию сжатого воздуха, которая поступает к электро-, гидро- или пневмодвигателям, повторно преобразующим ее в механическое движение.
3. По конструкции системы управления.
3.3. Автоматической системы управления.
В настоящие время ряд машин выпускают с механической передачей. Это объясняется простотой и надежностью конструкции, наличием узлов массового производства, высоким КПД. Однако следует учитывать, что механические передачи несовершенны:
а) ступенчатое регулирование скорости у них осуществляется с перерывом потока энергии от двигателя на ходовое оборудование при переключениях передач; по этим причинам снижается продолжительность использования максимальной мощности двигателя, что отрицательно влияет на производительность машины;
б) усложнена возможность автоматизации рабочих органов машины. Применяют следующие конструктивные решения современных передач.
1. Гидромеханическая передача, представляющая собой коробку передач (с числом ступеней порядка 4) с постоянным зацеплением зубьев шестерен (что необходимо для автоматизации управления), спаренную с гидротрансформа-тором, обеспечивающим число передач от нуля до максимума, переключение их под нагрузкой и плавное сцепление с двигателем во время движения. Такие унифицированные гидромеханические коробки передач широко применяют на самоходных дорожных машинах (скреперах, погрузчиках, катках и др.).
2. Объемная гидропередача, в которой передача энергии осуществляется с помощью рабочей жидкости от гидронасоса (обычно спаренного с двигателем) к гидродвигателям. Объемные гидропередачи устанавливают на приводных мостах, бортовых редукторах пневмоколесных и гусеничных машин или в вальцах дорожных катков. Изменение направления и скорости движения осуществляется направлением потока рабочей жидкости и регулированием ее подачи.
3. Передача с встроенными в ступицы ходовых колес двигателями; при этом колеса превращаются в активные движители и называются мотор-колесами. Мотор-колеса имеют разновидности: с встроенными электродвигателями постоянного тока (электромотор-колеса), с встроенными гидродвигателями объемного действия (гидромотор-колеса) и с встроенными электродвигателями переменного тока, имеющими пристроенные турботрансформаторы (турбомотор-колеса). Гидромотор-колеса могут иметь низкомоментные гидро-моторы, которые спаривают обычно с планетарными редукторами, или высокомоментные гидромоторы, не требующие редукторов. В передаче с гидромотор-колесами связь между ними и источником энергии (гидронасосом) осуществляется трубопроводами, а между электромотор-колесами и дизель-генераторном — электрокабелями, что значительно упрощает общую кинематическую компоновку. Только и смешанных трансмиссиях на их механических участках механическое движение передается без его преобразования в другие формы энергии. Во всех других случаях вращательное движение выходного вала двигателя силовой установки с помощью электрогенераторов, гидравлических или пневматических насосов преобразуется соответственно в электрическую энергию, энергию движения рабочей жидкости или энергию сжатого воздуха, которая поступает к электро-, гидро- или пневмодвигателям, повторно преобразующим ее в механическое движение. Все указанные выше преобразователи энергии (механической в иные формы и наоборот) являются составными частями трансмиссий.
Обычно свое наименование привод получает либо по типу двигателя силовой установки (от карбюраторного двигателя, дизельный), либо по виду используемой энергии внешнего источника (электрический, пневматический), либо по типу трансмиссии (гидравлический, дизель-электрический и т. п.). Если на машине установлено нескольких рабочих органов или исполнительных механизмов и все они приводятся в движение от одного двигателя, то привод называют одномоторным. В случае нескольких двигателей привод называют многомоторным. При этом от одного двигателя может приводиться либо один, либо не сколько рабочих органов (исполнительных механизмов). При индивидуальном приводе трансмиссионные двигатели могут питаться энергией либо от одного генератора (насоса), либо индивидуально — каждый двигатель от своего генератора (индивидуальный привод), либо по смешанной схеме. В случае индивидуального электрического привода каждый электродвигатель, приводящий в движение соответствующий рабочий орган или исполнительный механизм, может питаться непосредственно от электросети. В последнее время на машинах с несколькими рабочими органами или исполнительными механизмами используют преимущественно индивидуальный привод, обладающий более высоким коэффициентом полезного действия (КПД) по сравнению с групповым приводом, простотой, и агрегатностью конструкции, лучшей приспособленностью к автоматизации управления, лучшими условиями для эксплуатации и ремонта. При оценке эффективности приводов строительных машин предпочтение отдают тем приводам, которые имеют меньшие габариты и массу, обладают высокой надежностью и готовностью к работе, высоким КПД, просты в управлении, более приспособлены к автоматизации управления, обеспечивают независимость рабочих движений и возможность их совмещения. Передаваемое рабочему органу машины движение характеризуется кинематическими факторами -скоростями (линейными или угловыми) и силовыми факторами — усилиями (или моментами). Активное усилие (момент), с которым рабочий орган воздействует на преобразуемый материал (среду) по модулю равно сумме внешних и внутренних, а также инерционных (динамических) сопротивлений. Основными являются внешние сопротивления, которые определяются, прежде всего, свойствами преобразуемого материала и характером процесса преобразования.
Например, при работе водоотливной насосной установки внешними сопротивлениями будут: сила тяжести поднимаемой воды и силы трения при ее передвижении по трубопроводам. В этом случае сопротивления практически неизменны во времени. При разработке грунта ковшом экскаватора, отвалом бульдозера и т. п. сопротивления копанию нарастают от минимального до максимального значений, многократно повторяясь в процессе каждой операции копания. Внутренними сопротивлениями являются силы трения в сопрягаемых кинематических парах, которые обычно учитываются их КПД.
В условиях постоянных или слабо изменяемых во времени внешних сопротивлений привод работает в спокойном режиме практически с постоянной скоростью на его выходном звене. При изменяемых во времени внешних сопротивлениях, кроме внутренних сопротивлений, к ним добавляются динамические составляющие, обусловленные внешней (механической) характеристикой привода — функциональной зависимостью между его силовым и скоростным факторами на выходном звене. Обычно эти факторы связаны между собой обратной зависимостью — чем больше внешнее сопротивление, тем меньше скорость движения выходного привода звена.
Рис 2.1 График внешней (механической) характеристики
На рис. 2.1 представлен график такой зависимости для случая вращательного движения выходного звена привода, где через Т5 со и п обозначены соответственно вращающий момент, угловая скорость и частота вращения выходного звена. Если, например, на временном интервале At сопротивление возрастает от Ti до Т2, то, согласно внешней характеристике привода, угловая скорость снижается за то же время с
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Привод автомобиля: типы и особенности
Какой привод лучше? Прежде, чем ответить на этот вопрос, рассмотрим некоторые понятия.
Устойчивость – это способность автомобиля при отсутствии управляющих действий водителя (вращение рулевого колеса, изменение положения педали газа,
включение тормозов и т. д.) выдерживать заданное направление движения без опрокидывания и бокового скольжения колес.
Недостаточная поворачиваемость автомобиля
Поворачиваемость – свойство автомобиля изменять траекторию движения под действием боковых сил (силы ветра и т.п.) при неподвижном рулевом колесе.
Если водитель не поворачивает руль, но при этом:
– радиус поворота увеличивается – поворачиваемость недостаточная;
– радиус поворота уменьшается – поворачиваемость избыточная;
– радиус поворота не изменяется – поворачиваемость нейтральная.
Автомобиль с недостаточной поворачиваемостью обладает лучшей устойчивостью, так как под воздействием боковых сил он стремится двигаться по кривой большего радиуса. При этом уменьшается центробежная сила и транспортное средство восстанавливает движение в прежнем направлении.
Управляемость – способность автомобиля изменять направление движения в соответствии с управляющим воздействием водителя. Она тесно связана с устойчивостью. Так, при боковом скольжении (заносе) всех колес автомобиль может стать неуправляемым.
Склонность к заносу больше у ведущих колес. Например, при резком трогании с места буксуют только они. Для исключения заноса необходимо, чтобы сила сцепления колеса с дорогой была больше суммы сил, приложенных к нему. Ведущие колеса уже нагружены тяговым усилием или силой торможения двигателем. Поэтому при появлении боковых воздействий они раньше чем ведомые теряют сцепление с дорогой. У переднеприводного автомобиля, если он движется без багажа и пассажиров, задняя ось также склонна к заносу, так как на нее приходится меньший вес, чем на передние колеса. Соответственно меньше сила сцепления с дорогой.
Особенности поведения
При движении по прямой в случае бокового воздействия ветра на автомобиль ведущая задняя ось, более склонная к заносу, начинает смещаться в сторону действия возмущающей силы (рис. а). Автомобиль поворачивается вокруг точки, лежащей на продолжении передней оси (полюс поворота). При этом возникает центробежная сила, которая действует в одном направлении с боковым воздействием ветра и стремится увеличить занос.
В повороте на транспортное средство действует центробежная сила, а при возникновении заноса задней оси она увеличивается, следовательно, “стремится” еще больше повернуть автомобиль в сторону заноса. Соответственно заднеприводные транспортные средства в большинстве своем обладают избыточной поворачиваемостью.
Упрощенные схемы сил, действующих при возникновении боковой силы ветра: а – на заднеприводной автомобиль; б – на переднеприводной автомобиль; V – сила ветра; О – полюс поворота; F – центробежная сила; F1 и F2 – поперечная и продольная состовляющие центробежной силы.
Силы, действующие на автомобиль при боковом ветре
В случае воздействия бокового ветра на движущийся по прямой переднеприводный автомобиль начинается занос передней оси. Возникающая при этом центробежная сила (рис. б) действует в направлении противоположном заносу и препятствует ему. В повороте, при заносе колес передней оси, увеличившаяся центробежная сила “стремится” вернуть автомобиль к прежней траектории. Следовательно, переднеприводные транспортные средства в большинстве своем обладают недостаточной поворачиваемостью, поэтому они ведут себя более устойчиво, чем заднеприводные автомобили такого же класса, особенно на мокрой и обледенелой дороге.
Полный привод, подключаемый водителем.
В трансмиссиях такого типа обязательно есть раздаточная коробка. В ней может быть понижающая передача, но на большинстве моделей нет межосевого дифференциала. В этом случае второй мост (как правило, передний) подключается только для движения по бездорожью. На сухом асфальте это приведет к ухудшению устойчивости и управляемости из-за неизбежной пробуксовки колес, так как они не смогут вращаться с разными скоростями.
При отключенном переднем мосте такой автомобиль ведет себя практически как заднеприводный. На автомобилях, имеющих межосевой дифференциал, включение полного привода допустимо и на твердой сухой дороге. Это повышает устойчивость движения за счет перераспределения тяговых усилий на четыре колеса.
Поворачиваемость при этом изменяется, например переходит от избыточной к нейтральной или недостаточной, поскольку все колеса становятся ведущими. Однако движение с полным приводом повышает расход топлива из-за потерь мощности в дополнительно включенных агрегатах трансмиссии.
Полный привод, подключаемый автоматически.
В этих трансмиссиях крутящий момент начинает передаваться ко второй оси только при пробуксовке ведущих колес. За счет перераспределения тяговых усилий пробуксовка может прекратиться, а устойчивость повыситься. Если в трансмиссии установлена вискомуфта, то при значительном проскальзывании ведущих колес возможна ее внезапная полная блокировка (хамп-эффект).
При криволинейном движении (в повороте) это вызывает непредсказуемое поведение автомобиля. Водитель может не успеть адекватно среагировать и предпринять необходимые действия для сохранения контроля над ситуацией. Автомобили, имеющие фрикционную муфту с электронным управлением, не подвержены такому эффекту, так как блокировка осуществляется автоматически по специально подобранной зависимости. При отсутствии пробуксовки колес эти автомобили на твердой и сухой дороге обладают устойчивостью и управляемостью практически такой же, как переднеприводные.
Постоянный полный привод.
В таких трансмиссиях обязательно есть межосевой дифференциал, который может блокироваться следующим образом:
- самостоятельно силами внутреннего трения (“Торсен”, “Квайф”);
- при помощи электроники;
- принудительно водителем (жесткая блокировка).
На некоторых автомобилях блокировки дифференциала нет, а пробуксовка прекращается электронной противобуксовочной системой, которая подтормаживает колеса штатными тормозными механизмами. Поведение автомобиля с постоянным полным приводом зависит от распределения крутящего момента между мостами. Если на переднюю ось передается больший крутящий момент, характеристики автомобиля будут ближе к переднеприводному. Когда мощность распределяется по осям 50/50, показатели устойчивости и управляемости будут представлять собой что-то среднее между передним и задним приводами.
Например, поворачиваемость может быть близка к нейтральной. Распределение крутящего момента зависит от коэффициента (степени) блокировки межосевого дифференциала. Чем больше этот показатель, тем интенсивней происходит перераспределение тяговых усилий и, соответственно, изменение поведения автомобиля. У самоблокирующегося дифференциала коэффициент блокировки является величиной постоянной, не зависимой от условий движения.
Электронное управление оптимальнее перераспределяет силы и соответственно изменяет поведение автомобиля. Полная блокировка водителем межосевого дифференциала допустима только при движении в плохих дорожных условиях и обеспечивает максимальную проходимость. Проходимость при частичной блокировке ниже, так как для нее требуется пробуксовка колес. При устранении пробуксовки подтормаживанием колес увеличивается нагрузка на трансмиссию, тормоза и двигатель, что ведет к некоторому увеличению износа деталей и расхода топлива.
Что же выбрать?
Чтобы ответить на вопрос, автомобилю с какой трансмиссией отдать предпочтение, необходимо точно представлять основные условия его эксплуатации. Для бездорожья лучше всего подойдет постоянный полный привод с полной блокировкой межосевого дифференциала и понижающей передачей. Неплох для таких целей подключаемый водителем полный привод.
Повышают проходимость и самоблокирующиеся межколесные дифференциалы. Любителям скоростной езды по автомагистралям предпочтительнее передний или постоянный полный привод без раздаточной коробки, так как автомобили с такой трансмиссией в большинстве своем разрабатывались для этой цели. Подключаемый автоматически полный привод вполне подойдет тем, кто вынужден довольно часто съезжать на плохие дороги.
Такие машины неплохо ведут себя на шоссе, а проходимость по бездорожью у них выше, чем у переднего и заднего приводов. Сторонникам спокойного передвижения по асфальту вполне достаточно заднеприводного автомобиля. У каждого автомобиля существует своя критическая скорость прохождения поворотов, при которой начинается занос.
И хотя у полноприводных устойчивость и управляемость в некоторых случаях выше, преувеличивать их возможности не стоит, так как они тоже могут оказаться в кювете. Прекратить занос автомобиля можно различными способами, простейшие из них зависят от типа трансмиссии и приведены ниже.
При заносе заднеприводного автомобиля нельзя тормозить. Следует повернуть руль в сторону заноса и одновременно немного сбросить газ. Не надо отпускать акселератор совсем, иначе начнется торможение двигателем. Когда сила тяги уменьшится, занос может прекратиться. Только после этого поворачивают рулевое колесо в нужном направлении.
На переднеприводном автомобиле необходимо предпринимать несколько иные действия, которые зависят от того, на какой оси начался занос. Если он появился на задней – необходимо добавить газа, направить передние колеса в сторону выбранной траектории движения и они “вытянут” автомобиль из заноса. При скольжении передней ведущей оси надо несколько сбросить газ, до прекращения пробуксовки колес, и только после этого, при необходимости, повернуть руль в сторону выбранной траектории.
Полноприводные автомобили из-за большого разнообразия особенностей трансмиссий имеют довольно различающиеся характеристики. Поэтому трудно определить общий для всех порядок действий для выхода из заноса. Несмотря на общие черты в поведении автомобилей в пределах своего типа привода, каждая модель транспортного средства ведет себя по-разному, особенно на больших скоростях движения.
Связано это со множеством конструктивных особенностей – кинематикой подвески, распределением весовой нагрузки по осям, применением различных электронных систем (противобуксовочной, стабилизации движения и т. п.), характеристиками используемых шин и т.д. При пересаживании на незнакомый автомобиль, особенно с другим типом привода, необходимо время для привыкания, соблюдение максимальной осторожности при выборе скорости движения, особенно на скользком дорожном покрытии.