Принципиальная электрическая схема синхронного двигателя

Типовые схемы пуска синхронных электродвигателей

Синхронные двигатели получили широкое распространение в промышленности для электроприводов, работающих с постоянной скоростью (компрессоров, насосов и т.д.). В последнее время, вследствие появления преобразовательной полупроводниковой техники, разрабатываются регулируемые синхронные электроприводы.

Достоинства синхронных электродвигателей

Синхронный двигатель несколько сложнее, чем асинхронный, но обладает рядом преимуществ, что позволяет применять его в ряде случаев вместо асинхронного.

1. Основным достоинством синхронного электродвигателя является возможность получения оптимального режима по реактивной энергии , который осуществляется путем автоматического регулирования тока возбуждения двигателя. Синхронный двигатель может работать, не потребляя и не отдавая реактивной энергии в сеть, при коэффициенте мощности ( cos фи) равным единице.Если для предприятия необходима выработка реактивной энергии, то с и нхронный электродвигатель, работая с перевозбуждением, может отдавать ее в сеть.

2. Синхронные электродвигатели менее чувствительны к колебаниям напряжения сети, чем асинхронные электродвигатели. Их максимальный момент пропорционален напряжению сети, в то время как критический момент асинхронного электродвигателя пропорционален квадрату напряжения.

3. Синхронные электродвигатели имеют высокую перегрузочную способность. Кроме того, перегрузочная способность синхронного двигателя может быть автоматически увеличена за счет повышения тока возбуждения, например, при резком кратковременном повышении нагрузки на валу двигателя.

4. Скорость вращения синхронного двигателя остается неизменной при любой нагрузке на валу в пределах его перегрузочной способности.

Способы пуска синхронного электродвигателя

Возможны следующие способы пуска синхронного двигателя: асинхронный пуск на полное напряжение сети и пуск на пониженное напряжение через реактор или автотрансформатор.

Пуск синхронного двигателя осуществляется как пуск асинхронного. Собственный пусковой момент синхронной машины мал, а у неявнополюсной равен нулю. Для создания асинхронного момента ротор снабжается пусковой беличьей клеткой, стержни которой закладываются в пазы полюсной системы. (В явнополюсном двигателе стержни между полюсами, естественно, отсутствуют.) Эта же клетка способствует повышению динамической устойчивости двигателя при набросах нагрузки.

За счет асинхронного момента двигатель трогается и разгоняется. Ток возбуждения в обмотке ротора при разгоне отсутствует. Машина пускается невозбужденной, так как наличие возбужденных полюсов осложнило бы процесс разгона, создавая тормозной момент, аналогичный моменту асинхронного двигателя при динамическом торможении.

При достижении так называемой подсинхронной скорости, отличающейся от синхронной на 3 — 5%, подается ток в обмотку возбуждения и двигатель после нескольких колебаний около положения равновесия втягивается в синхронизм. Явнополюсные двигатели за счет реактивного момента при малых моментах на валу иногда втягиваются в синхронизм без подачи тока в обмотку возбуждения.

В синхронных двигателях трудно одновременно обеспечить необходимые значения пускового момента и входного момента под которым понимают асинхронный момент, развиваемый при достижении скоростью 95% синхронной. В соответствии с характером зависимости статического момента от скорости, т.е. в соответствии с типом механизма, для которого предназначен двигатель, на электромашиностроительных заводах приходится варьировать параметры пусковой клетки.

Иногда для ограничения токов при пуске мощных двигателей уменьшают напряжение на зажимах статора, включая последовательно обмотки автотрансформатора или резисторы. Следует иметь в виду, что при пуске синхронного двигателя цепь обмотки возбуждения замыкается на большое сопротивление, превышающее сопротивление самой обмотки в 5 — 10 раз.

Читайте также:  Эксплуатация автомобиля разрешается если не работает указатель температуры охлаждающей жидкости

В противном случае под действием токов, наводимых в обмотке при пуске, возникает пульсирующий магнитный поток, обратная составляющая которого, взаимодействуя с токами статора, создает тормозной момент. Этот момент достигает максимального значения при скорости, несколько превышающей половину номинальной, и под его влиянием двигатель может приостановить разгон на этой скорости. Оставлять на время пуска цепь возбуждения разорванной опасно, так как возможно повреждение изоляции обмотки индуцируемыми в ней ЭДС.

Асинхронный пуск синхронного электродвигателя

Схема возбуждения синхронного двигателя с глухоподключенным возбудителем довольно проста и может применяться в том случае, если пусковые токи не вызывают падения напряжения в сети больше допустимого и статистический момент нагрузки Мс

Асинхронный пуск синхронного двигателя производится присоединением статора к сети. Двигатель разгоняется как асинхронный до скорости вращения, близкой к синхронной.

В процессе асинхронного пуска обмотка возбуждения замыкается на разрядное сопротивление, чтобы избежать пробоя обмотки возбуждения при пуске, так как при малой скорости ротора в ней могут возникнуть значительные перенапряжения. При скорости вращения, близкой к синхронной, срабатывает контактор КМ (цепь питания контактора на схеме не показана), обмотка возбуждения отключается от разрядного сопротивления и подключается к якорю возбудителя. Пуск заканчивается.

Слабым местом большинства электроприводов с синхронными двигателям, значительно усложняющим эксплуатацию и повышающим затраты, многие годы являлся электромашинный возбудитель. В настоящее время широкое распространение для возбуждения синхронных двигателей находят тиристорные возбудители . Они поставляются в комплектном виде.

Тиристорные возбудители синхронных электродвигателей более надежны и имеют более высокий к.п.д. по сравнению с электромашинными возбудителями. С их помощью легко решаются вопросы оптимального регулирования тока возбуждения для поддержания постоянства cos фи, напряжения на шинах, от которых питается синхронный двигатель, а также ограничение токов ротора и статора синхронного двигателя в аварийных режимах.

Тиристорными возбудителями комплектуется большинство выпускаемых крупных синхронных электродвигателей. Они выполняют обычно следующие функции:

  • пуск синхронного двигателя с включенным в цепь обмотки возбуждения пусковым резистором,
  • бесконтакное отключение пускового резистора после окончания пуска синхронного двигателя и защиту его от перегрева,
  • автоматическую подачу возбуждения в нужный момент пуска синхронного электродвигателя,
  • автоматическое и ручное регулирование тока возбуждения
  • необходимую форсировку возбуждения при глубоких посадках напряжения на статоре и резких набросах нагрузки на валу синхронного двигателя,
  • быстрое гашение поля синхронного двигателя при необходимости снижения тока возбуждения и отключениях электродвигателя,
  • защиту ротора синхронного двигателя от длительной перегрузки по току и коротких замыканий.

Если пуск синхронного электродвигателя производится на пониженное напряжение, то при «легком» пуске возбуждение подается до включения обмотки статора на полное напряжение, а при «тяжелом» пуске подача возбуждения происходит при полном напряжении в цепи статора. Возможно подключение обмотки возбуждения двигателя к якорю возбудителя последовательно с разрядным сопротивлением.

Процесс подачи возбуждения синхронному двигателю автоматизируется двумя способами: в функции скорости и в функции тока.

Система возбуждения и устройство управления синхронных двигателей должны обеспечивать:

  • пуск, синхронизацию и остановку двигателя (с автоматической подачей возбуждения в конце пуска);
  • форсировку возбуждения кратностью не менее 1,4 при снижении напряжения сети до 0,8U н ;
  • возможность компенсации двигателем реактивной мощности, потребляемой (отдаваемой) смежными электроприемниками в пределах тепловых возможностей двигателя;
  • отключение двигателя при повреждениях в системе возбуждения;
  • стабилизацию тока возбуждения с точностью 5% установленного значения при изменении напряжения сети от 0,8 до 1,1;
  • регулирование возбуждения по отклонению напряжения статора с зоной нечувствительности 8%;
  • при изменении питающего напряжения статора синхронного двигателя от 8 до 20% ток изменяется от установленного значения до 1,4 I н , увеличение тока возбуждения для обеспечения максимальной перегружаемости двигателя.
Читайте также:  Пневматическое оборудование для ремонта автомобилей

На схеме, приведенной на рисунке, подача возбуждения синхронному двигателю осуществляется с помощью электромагнитного реле постоянного тока КТ (реле времени с гильзой). Катушка реле включается на разрядное сопротивление Rразр через диод VD. При подключении обмотки статора к сети в обмотке возбуждения двигателя наводится ЭДС. По катушке реле КТ проходит выпрямленный ток, амплитуда и частота импульсов которого зависят от скольжения.

При пуске скольжение S = 1. По мере разгона двигателя оно уменьшается и интервалы между выпрямленными полуволнами тока возрастают; магнитный поток постепенно снижается по кривой Ф(t).

При скорости, близкой к синхронной, магнитный поток реле успевает достигнуть значения потока отпадания реле Фот в момент, когда через реле КТ ток не проходит. Реле теряет питание и своим контактом создает цепь питания контактора КМ (на схеме цепь питания контактора КМ не показана).

Рассмотрим контроль подачи возбуждения в функции тока с помощью реле тока. При пусковом токе срабатывает реле тока КА и размыкает свой контакт в цепи контактора КМ2.

График изменения тока и магнитного потока в реле времени КТ

При скорости, близкой к синхронной, реле КА отпадает и замыкает свой контакт в цепи контактора КМ2. Контактор КМ2 срабатывает, замыкает свой контакт в цепи возбуждения машины и шунтирует резистор Rразр.

Синхронные электродвигатели: устройство, схема

Особенностью синхронных электродвигателей является то, что у магнитного потока и ротора скорости вращения одинаковы. По этой причине ротор электрического двигателя не изменяет свою скорость при увеличение нагрузки. На роторе находится обмотка, которая создает магнитное поле.

Иногда используются мощные постоянные магниты. Обычно в синхронных машинах на роторе столько же обмоток, сколько и на статоре. Так получается выровнять скорости вращения магнитного потока и ротора. Нагрузка, которая подключена к электродвигателю, на скорость не влияет вообще.

Конструкция электродвигателя

Устройство синхронного электродвигателя состоит из следующих элементов:

  1. Неподвижная часть — статор, на котором располагаются обмотки.
  2. Подвижный ротор, его иногда называют индуктором или якорем.
  3. Передние и задние крышки.
  4. Подшипники, устанавливаемые на роторе.

Между якорем и статором имеется свободное пространство. В пазах закладываются обмотки, они соединяются в звезду. Как только на двигатель подается напряжение, по обмотке якоря начинает протекать ток. Образуется магнитное поле вокруг индуктора. Но на статор тоже подаётся напряжение. И здесь возникает магнитный поток. Эти поля смещены относительно друг друга.

Как работает синхронный мотор

В синхронных машинах электромагниты на статоре являются полюсами, так как они работают на постоянном токе. Всего существует две схемы, по которым соединяются обмотки статоров:

Для того чтобы снизить магнитное сопротивление и оптимизировать условия прохода поля, применяются сердечники, изготовленные из ферромагнетиков. Они имеются как в статоре, так и в роторе.

Изготавливаются они из специальных сортов электротехнической стали, в которой содержится огромное количество такого элемента, как кремний. С помощью этого удается значительно понизить вихревой ток, а также увеличить электрическое сопротивление металла.

Читайте также:  Ремонт швейной машины долгопрудный

В основе работы синхронных электродвигателей лежит взаимодействие полюсов статора и ротора. При запуске происходит ускорение до скорости движения потока. Именно в таких условиях электрический двигатель действует в синхронном режиме.

Метод запуска с помощью дополнительного электромотора

Ранее использовались специальные двигатели для запуска, которые соединялись с мотором при помощи механических устройств (ременной передачей, цепной, и пр.). Во время запуска ротор начинал вращаться и, постепенно ускоряясь, достигал значения синхронной скорости. После этого электродвигатель сам начинал работать. Именно такой принцип действия у синхронного электродвигателя, независимо от конструкции и производителя.

Обязательным условием является то, что пусковой электродвигатель должен иметь мощность около 15% от аналогичной характеристики разгоняемого мотора. Такой мощности оказывается вполне достаточно, чтобы запустить любой синхронный электродвигатель, даже если к нему подключена небольшая нагрузка. Этот метод довольно сложный, а себестоимость всего оборудования значительно повышается.

Современный метод запуска

Современные конструкции синхронных электродвигателей не оснащаются подобными схемами для разгона. Используется другая система запуска. Примерно таким образом происходит включение синхронной машины:

  1. При помощи реостата замыкаются обмотки ротора. В результате якорь становится короткозамкнутым, как на простых асинхронных электродвигателях.
  2. На роторе имеется еще и короткозамкнутая обмотка, которая является успокоительной, с ее помощью предотвращается качание якоря во время синхронизации.
  3. Как только якорь достигает минимальной скорости вращения, к его обмоткам подключается постоянный ток.
  4. Если используются постоянные магниты, то применять внешние пусковые двигатели придется обязательно.

Существуют криогенные синхронные электромоторы, в которых используется конструкция обращенного типа. Обмотки возбуждения изготавливаются из сверхпроводниковых материалов.

Преимущества синхронных машин

Асинхронные и синхронные электродвигатели имеют очень схожие конструкции, но различия всё равно имеются. В последних имеется явное преимущество в том, что происходит возбуждение от источника постоянного тока. В этом случае может мотор работать при очень большом коэффициенте мощности. Существуют также другие преимущества синхронных двигателей:

  1. Они работают с завышенным коэффициентом. Это позволяет уменьшить расход электроэнергии, а также существенно снижает потери тока. Коэффициент полезного действия синхронной машины будет намного выше, нежели у асинхронного двигателя с такой же мощностью.
  2. Крутящий момент напрямую зависит от того, какое напряжение в питающей сети. Даже при условии, что напряжение в сети уменьшится, мощность сохранится.

Но всё равно асинхронные машины используется намного чаще, нежели синхронная. Дело в том, что они имеют большую надежность, простую конструкцию, не требуют дополнительного ухода.

Недостатки синхронных двигателей

Оказывается, что недостатков у синхронных машин намного больше. Вот только основные:

  1. Схема синхронного электродвигателя довольно сложная, она состоит из большого количества элементов. Именно по этой причине себестоимость устройства оказывается очень высокой.
  2. Обязательно нужно использовать для питания индуктора источник постоянного тока. Это значительно усложняет всю конструкцию.
  3. Процедура запуска электрического двигателя довольно сложная, нежели у асинхронных машин.
  4. Произвести регулировку частоты вращения ротора можно только при помощи использования частотных преобразователей.

В целом же, преимущества существенно перекрывают недостатки синхронных электродвигателей. По этой причине они очень часто используются там, где необходимо вести непрерывный постоянный производственный процесс, где не нужно часто останавливать и запускать оборудование. Синхронные машины можно встретить в мельницах, дробилках, насосах, компрессорах. Они редко выключаются, работают почти постоянно. За счет применения таких моторов можно достичь существенной экономии электроэнергии.

Оцените статью