- Устройство и принцип работы механизма сцепления автомобиля
- Принцип работы сцепления автомобиля
- Принцип работы приводов сцепления
- Как правильно пользоваться сцеплением на автомобиле
- Видео: принцип работы сцепления автомобиля
- Устройство и принцип работы сцепления автомобиля
- Функции сцепления
- Элементы муфты сцепления
- Принцип работы
- Виды сцепления
- Сухое сцепление
- Мокрое сцепление
- Сухое двухдисковое сцепление
- Сцепление двухмассового маховика
- Ресурс сцепления
- Особенности керамического сцепления
Устройство и принцип работы механизма сцепления автомобиля
Сцепление – это механизм, предназначенный для передачи крутящего момента двигателя к коробке передач, а также плавного соединения и разъединения двигателя с механизмами трансмиссии. С его помощью можно начинать движение на автомобиле, переключать передачи, останавливаться с работающим двигателем, маневрировать при резком изменении скорости.
Механизм сцепления предохраняет детали двигателя и трансмиссии автомобиля от повреждений и перегрузок при быстром включении передач и резком торможении.
В конце этой статьи смотрите видео-урок, в котором очень наглядно продемонстрированно, как работает механизм сцепления в автомобиле.
А ниже мы расскажем о принципе работы сцепления автомобиля, об устройстве и типах приводов включения и выключения сцепления, и о том, как правильно пользоваться механизмом сцепления на автомобилях с механической коробкой передач.
Принцип работы сцепления автомобиля
Принцип работы сцепления автомобиля заключается в плавном соединении и разъединении между собой двух металлических дисков: один жестко привязан к валу двигателя, а второй – к коробке переключения передач.
Механизм сцепления приводится в действие тросом, ведущим от педали в подкапотное пространство автомобиля непосредственно к самому механизму сцепления. При нажатой педали происходит разъединение двигателя и трансмиссии.
Основными деталями механизма сцепления являются:
- Маховик коленвала;
- Ведущий диск (нажимной);
- Ведомый диск.
Диск, передающий усилие двигателя, называется ведущим (он же нажимной или «корзина» сцепления). Он крепится шарнирными соединениями к штампованному стальному кожуху, который, в свою очередь, жестко соединен болтами с маховиком коленчатого вала. Такой вид крепления позволяет ведущему диску сцепления изменять расстояние до кожуха.
При продольном перемещении «корзина» сцепления прижимает к маховику диск, называемый ведомым. Он соединен с первичным валом коробки переключения передач. В рабочем положении ведомый диск зафиксирован между маховиком и нажимным диском, а при нажатии на педаль сцепления он освобождается.
Плавность включения сцепления обеспечивается за счет проскальзывания дисков до момента их полного прижатия друг к другу. Для этого ведомый диск делают из нескольких частей, разделенных упругими пластинами. Также он имеет специальные накладки из материала, устойчивого к нагреву и износу. Нажимной диск сцепления тоже подпружинен и имеет теплоизолирующие прокладки.
При отпущенной педали сцепления ведущий и ведомый диски прижимаются сильными пружинами к маховику, образуя жесткую конструкцию. При этом вал коробки передач начинает вращаться со скоростью вращения коленвала, передавая усилие к узлам трансмиссии и далее через приводные валы к колесам. Автомобиль трогается с места.
Но скорости двух валов не могут моментально стать одинаковыми, автомобиль в этом случае «прыгнет» и заглохнет. Поэтому педаль управления сцеплением отпускается плавно, чтобы с помощью сил трения уравнять вращение ведущего и ведомого дисков. Тогда можно нажатием на педаль акселератора изменять скорость вращения коленвала и, соответственно, управлять скоростью движения автомобиля.
Такой вид сцепления называется сухим, дисковым и постоянно замкнутым. Это значит, что для его работы нужны сухие поверхности дисков, при отпущенной педали, соединенных друг с другом.
Принцип работы приводов сцепления
Принцип работы привода сцепления автомобиля, с которым усилие от педали передается на механизм переключения, может быть механическим, гидравлическим или электрическим.
Механический привод сцепления конструктивно самый простой: он представляет собой стальной трос, связывающий тягу педали и рычаг включения сцепления. На нем обычно находится резьбовое соединение, которым можно регулировать длину троса. Недостаток такого привода – большее усилие при нажатии на педаль.
Гидравлический привод комфортнее в работе, особенно если приходится часто пользоваться сцеплением. Его принцип работы похож на работу тормозной системы: при нажатии на педаль поршень давит на жидкость, которая, двигаясь в цилиндре, приводит в движение толкатель рычага включения сцепления. В этом случае ход педали мягче, но нужно следить за состоянием гидравлических шлангов, и контролировать уровень и качество заливаемой в систему гидравлической жидкости.
Электрический привод отличается от механического тем, что трос выключения сцепления приводится в движение от электромотора, который включается при нажатии на педаль. В остальном его устройство мало чем отличается от механического привода.
Как правильно пользоваться сцеплением на автомобиле
На практике работа со сцеплением автомобиля в основном выражается в выработке навыка правильного трогания с места, особенно на подъеме. При оживленном городском движении умелая работа с педалью позволит автомобилю двигаться плавно и не заглохнуть при резком торможении.
При начале движения, нужно, отпуская педаль сцепления, уловить момент соприкосновения дисков, уравновесить скорости их вращения, и дальше плавно отпустить педаль. Ориентир – число оборотов двигателя. Если двигатель работает равномерно, значит, сцепление включается правильно.
Сцеплением следует пользоваться лишь при старте, переключении передач и при остановке автомобиля. Выполнение этого требования продлит срок его службы.
- Резкое или, наоборот, замедленное отпускание педали сцепления при старте приводит к ускоренному износу рабочей поверхности дисков.
- Остановка на светофоре при нажатой педали и включенной передаче не лучшим образом скажется на работе нажимных пружин, подшипника и вилки выключения.
Две главные неисправности механизма сцепления – это недостаточно плотное соприкосновение дисков и недостаточно полное их разъединение.
- В первом случае сцепление пробуксовывает, а у автомобиля будет наблюдаться плохая динамика разгона. Обычно это является результатом износа ведомого диска, его фрикционных накладок.
- Во втором случае в результате неполного разъединения дисков при включенной передаче и нажатой педали автомобиль пытается поехать.
Если эти неисправности не устраняются регулировкой привода, то необходим ремонт самого механизма в стационарных условиях.
Видео: принцип работы сцепления автомобиля
Устройство и принцип работы сцепления автомобиля
Сцеплением называется механизм трансмиссии, передающий крутящий момент от двигателя к коробке передач за счет силы трения. Также оно позволяет кратковременно отсоединить двигатель от трансмиссии и вновь их плавно соединить. Существует достаточно много разновидностей муфт сцепления. Они различаются по количеству ведомых дисков (однодисковое, двухдисковое или многодисковое), по типу рабочей среды (сухое или мокрое) и по типу привода. Разные виды сцеплений имеют соответствующие преимущества и недостатки, но наибольшее распространение на современных автомобилях получило однодисковое сухое сцепление либо с механическим, либо гидравлическим приводом.
Функции сцепления
Муфта сцепления устанавливается между двигателем и коробкой передач и является одним из наиболее нагруженных элементов трансмиссии. Она выполняет следующие основные функции:
- Плавное разъединение и соединение двигателя и коробки передач.
- Передача крутящего момента без проскальзывания (без потерь).
- Компенсация вибраций и нагрузок от неравномерности работы двигателя.
- Снижение нагрузок на элементы двигателя и трансмиссии.
Элементы муфты сцепления
Стандартная муфта сцепления, применяющаяся на большинстве автомобилей с механической коробкой передач, включает следующие основные элементы:
- Маховик двигателя – ведущий диск.
- Ведомый диск сцепления.
- Корзина сцепления – нажимной диск.
- Выжимной подшипник сцепления.
- Муфта выключения сцепления.
- Вилка сцепления.
- Привод сцепления.
На ведомый диск сцепления с обеих сторон установлены фрикционные накладки. Его функция – передача крутящего момента за счет силы трения. Встроенный в корпус диска пружинный демпфер крутильных колебаний смягчает соединение с маховиком и гасит вибрации и нагрузки от неравномерности работы двигателя.
Схема расположения диска сцепления, корзины и выжимного подшипника с муфтой выключения
Нажимной диск и диафрагменная пружина, воздействующие на ведомый диск сцепления, в сборе представляют собой единый узел, получивший название “корзина сцепления”. Ведомый диск сцепления расположен между корзиной и маховиком и соединен с первичным валом коробки передач с помощью шлицев, по которым он может перемещаться.
Диафрагменная пружина корзины может быть либо нажимного, либо вытяжного принципа действия. Отличие – в направлении приложения усилия от привода сцепления: к маховику или от маховика. Особенность конструкции пружины вытяжного действия позволяет использовать корзину, толщина которой значительно меньше. Это делает узел максимально компактным.
Принцип работы
Принцип работы сцепления основан на жестком соединении ведомого диска сцепления и маховика двигателя за счет возникающей силы трения от усилия, которое создает диафрагменная пружина. Сцепление имеет два режима: «включено» и «выключено». Основное время работы ведомый диск прижат к маховику. Крутящий момент от маховика передаётся ведомому диску, а от него через шлицевое соединение на первичный вал коробки передач.
Схема работы диафрагменной пружины
Для выключения муфты водитель нажимает на педаль, которая соединена с вилкой механическим или гидравлическим приводом. Вилка перемещает выжимной подшипник, который, нажимая на концы лепестков диафрагменной пружины, прекращает её давление на нажимной диск, а он, в свою очередь, освобождает ведомый. В этот момент двигатель разъединен с трансмиссией.
После включения нужной передачи в коробке передач водитель отпускает педаль сцепления, вилка перестаёт воздействовать на выжимной подшипник, а тот на пружину. Нажимной диск прижимает ведомый к маховику. Двигатель соединен с трансмиссией.
Виды сцепления
Сухое сцепление
Принцип действия сцепления данного типа основан на силе трения, возникающей при взаимодействии сухих поверхностей: ведущего, ведомого и нажимного дисков. Это обеспечивает жесткую связь двигателя и коробки передач. Сухое однодисковое сцепление – самый распространенный вид, использующийся на основной массе автомобилей с механической КПП.
Мокрое сцепление
Данный вид сцепления предполагает работу трущихся поверхностей в масляной ванне. По сравнению с сухой, такая схема обеспечивает более плавное соприкосновения дисков; узел эффективнее охлаждается за счет циркуляции жидкости и может передавать больший момент на трансмиссию.
Двойное сцепление мокрого типа
Мокрая схема обычно применяется на современных роботизированных КПП с двойным сцеплением. Особенность работы такого сцепления заключается в том, что на четные и нечетные передачи КПП подается крутящий момент от отдельных ведомых дисков. Привод сцепления – гидравлический, управляемый электроникой. Переключение скоростей происходит при постоянной передаче крутящего момента на трансмиссию без разрыва потока мощности. Данная конструкция является более дорогой и сложной в производстве.
Сухое двухдисковое сцепление
Сухое двухдисковое сцепление предполагает наличие двух ведомых дисков и промежуточной проставки между ними. Данная схема способна передать больше крутящего момента при тех же размерах механизма сцепления. Сама по себе она проще в производстве по сравнению с мокрой. Обычно применяется на грузовиках и легковых автомобилях с особо мощными двигателями.
Сцепление двухмассового маховика
Двухмассовый маховик состоит из двух частей. Одна из них связана с двигателем, вторая – с ведомым диском. Обе составляющие маховика имеют небольшой свободный ход относительно друг друга в плоскости вращения и соединены пружинами между собой.
Схема двухмассового маховика
Особенностью сцепления двухмассового маховика является отсутствие пружинного демпфера крутильных колебаний в ведомом диске. Функция гашения колебаний заложена в конструкцию маховика. Помимо передачи крутящего момента он максимально эффективно сглаживает вибрации и нагрузки, возникающие от неравномерности работы двигателя.
Ресурс сцепления
Ресурс сцепления главным образом зависит от условий эксплуатации автомобиля, а также от стиля езды водителя. В среднем, срок службы сцепления может доходить до 100-150 тысяч километров пробега. В результате естественного износа, возникающего в момент соприкосновения дисков, фрикционные поверхности изнашиваются и требуют замены. Основная причина – проскальзывание дисков.
Двухдисковое сцепление обладает большим ресурсом за счет увеличенного числа рабочих поверхностей. Выжимной подшипник сцепления задействуется при каждом разрыве соединения двигателя и коробки передач. Со временем в подшипнике вырабатывается и теряет свойства вся смазка, в следствие чего он перегревается и выходит из строя.
Особенности керамического сцепления
Ресурс сцепления и эффективность его работы на пределе нагрузок зависит и от свойств материала, обеспечивающего зацепление дисков. Стандартный состав накладок дисков сцепления большинства автомобилей включает спрессованную смесь стеклянных и металлических волокон, смолы и каучука. Поскольку принцип работы сцепления базируется на силе трения, фрикционные накладки ведомого диска рассчитаны на работу при высоких температурах, доходящих до 300-400 градусов Цельсия.
Диск сцепления с керамическими фрикционными накладками
В мощных спортивных автомобилях нагрузки на сцепление намного превышают обычные нормы. Для некоторых трансмиссий может применяться керамическое и металлокерамическое сцепление. В состав материала таких накладок входит керамика и кевлар. Металлокерамический фрикционный материал менее подвержен износу и выдерживает нагрев до 600 градусов без потери рабочих качеств.
Производители используют различные конструкции муфты сцепления, оптимальные для определенного автомобиля, исходя из его назначения и стоимости. Сухое однодисковое сцепление остается достаточно эффективной и недорогой в изготовлении конструкцией. Данная схема широко применяется на легковых автомобилях бюджетного и среднего классов, а также на внедорожниках и грузовиках.