- Устройство коллекторных машин постоянного тока
- Устройство щеточно коллекторного перехода.
- Достоинства и недостатки коллекторных машин постоянного тока.
- ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО КОЛЛЕКТОРНЫХ МАШИН ПОСТОЯННОГО ТОКА
- Коллекторный электродвигатель постоянного тока
- Конструкция коллекторного электродвигателя постоянного тока
- Типы коллекторных электродвигателей
- Коллекторный двигатель с постоянными магнитами
- Коллекторный двигатель с обмотками возбуждения
- Двигатели независимого и параллельного возбуждения
- Двигатель последовательного возбуждения
- Двигатель смешанного возбуждения
- Характеристики коллекторного электродвигателя постоянного тока
- Основные параметры электродвигателя постоянного тока
- Постоянная момента
Устройство коллекторных машин постоянного тока
Характерным признаком коллекторных машин является наличие у них коллектора — механического преобразователя переменного тока в постоянный и наоборот. Необходимость в таком преобразователе объясняется тем, что в обмотке якоря коллекторной машины должен протекать переменный ток, так как только в этом случае в машине происходит непрерывный процесс электромеханического преобразования энергии.
К коллекторным машинам постоянного тока относятся двигатель постоянного тока ДПТ и генератор постоянного тока ГПТ которые имеют одинаковую конструкцию и могут заменять друг друга то есть ДПТ может работать как ГПТ и наоборот. Разберем устройство коллекторных машин на примере двигателя постоянного тока.
Коллекторная машина постоянного тока состоит из:
- Якоря (подвижная часть) который состоит из вала,обмотки якоря, коллектора, двух подшипников и сердечника. Сердечник — это цилиндр из штампованных листов электротехнической стали толщиной 0,5 мм покрытых электроизоляционным лаком. Такая сборная конструкция служит для уменьшения вихревых токов. В сердечнике есть пазы в которые вложены пазовые стороны обмотки якоря.
- Статора (4) (неподвижной части) — станина, главные полюса с полюсными катушками(2,3).
Статор конструктивно может быть выполнен двух видов:
- сборный — состоит из цельной тянутой трубы и прикреплённым к ней внутри полюсов. Сердечник полюса выполнен в виде стального бруска либо из шихтованных пластин 0,5 — 1 мм. Обмотка полюса намотана вокруг сердечника. Обмотки полюсов соединены между собой последовательно и образуют обмотку возбуждения которая при подключении к источнику постоянного тока создаёт магнитное поле в магнитной системе двигателя.
- цельный шихтованный— применяется в машинах мощностью 600 Вт и более. Он состоит из из пакета пластин электротехнической стали сложной конфигурации толщиной 0,35 — 0,5 мм.
Устройство щеточно коллекторного перехода.
Наиболее сложным и ненадежным местом коллекторной машины является щеточно коллекторный переход который состоит из щеток (которые крепятся в щеткодержатели) и коллектора который состоит из набора коллекторных пластин трапецеидального сечения, разделенных миканитовыми прокладками. Пластины из меди и миканита удерживаются в сжатом состоянии за нижнюю часть, имеющую форму «ласточкина хвоста», посредством стальных конусных колец 1 (рис. 13.2). Выступающая вверх часть коллекторных пластин 6, называемая «петушок», служит для присоединения секций обмотки якоря к пластинам коллектора. Коллекторные пластины изолируют от конусных колец миканитовыми манжетами 3, а от втулки 5 — миканитовым изолирующим цилиндром 4. Поверхность медных пластин каллектора в процессе работы машины постепенно истирается щетками. Что бы при этом миканитовые прокладки не выступали над рабочей поверхностью медных пластин, что могло бы привести к нарушению электрического контакта коллектора со щетками, приходится периодически выполнять «продораживаные» коллектора. Эта операция состоит в том, что между рабочими поверхностями коллекторных пластин фрезеруют пазы (дорожки) на глубину до 1,5 мм (рис. 13.4).
Достоинства и недостатки коллекторных машин постоянного тока.
Электрические машины постоянного тока используют как в качестве генераторов, так и двигателей. Наибольшее применение имеют двигатели постоянного тока, диапазон мощности которых достаточно широк: от долей ватта (для привода устройств автоматики) до нескольких тысяч киловатт (для привода прокатных станов, шахтных подъемников и других крупных механизмов).
Двигатели постоянного тока широко используют для привода подъемных устройств в качестве крановых двигателей и привода транспортных средств, а также в качестве тяговых двигателей.
Основные достоинства двигателей постоянного тока по сравнению с бесколлекторными двигателями переменного тока — хорошие пусковые и регулировочные свойства, возможность получения частоты вращения более 3000 об/мин, а недостатки — относительно высокая стоимость, некоторая сложность в изготовлении, пониженная надежность. Эти недостатки машин постоянного тока обусловлены наличием в них щеточно-коплекторного узла, который к тому же является источником радиопомех и пожароопасности. Но, несмотря на отмеченные недостатки, двигатели постоянного тока в некоторых случаях пока незаменимы, так как обладают большой перегрузочной способностью, хорошими пусковыми и регулировочными свойствами.
ПРИНЦИП ДЕЙСТВИЯ И УСТРОЙСТВО КОЛЛЕКТОРНЫХ МАШИН ПОСТОЯННОГО ТОКА
Принцип действия генератора и двигателя постоянного тока
Характерным признаком коллекторных машин является наличие у них коллектора — механического преобразователя переменного тока в постоянный и наоборот. Необходимость в таком преобразователе объясняется тем, что в обмотке якоря коллекторной машины должен протекать переменный ток, так как только в этом случае в машине происходит непрерывный процесс электромеханического преобразования энергии.
Рассмотрим принцип действия коллекторного генератора постоянного тока. На рис. 24.1 изображена упрощенная модель такого генератора: между полюсами N и S постоянного магнита находится вращающаяся часть генератора — якорь, вал которого посредством шкива и ременной передачи механически связан с приводным двигателем (на рисунке не показан) — источником механической энергии. В двух продольных пазах на сердечнике якоря расположена обмотка в виде одного витка аbсd, концы которого присоединены к двум медным изолированным друг от друга полукольцам, образующим простейший коллектор. На поверхность коллектора наложены щетки А и В, осуществляющие скользящий контакт с коллектором и связывающие генератор с внешней цепью, куда включена нагрузка сопротивлением Л.
Предположим, что приводной двигатель вращает якорь генератора против часовой стрелки, тогда в витке на якоре, вращающемся в магнитном поле постоянного магнита, наводится ЭДС, мгновенное значение которой
е = 2ВLv, а направление для положения якоря, изображенного на рис. 24.1, указано стрелками.
Рис. 24.1. Упрощенная модель коллекторной машины
|
В процессе работы генератора якорь вращается и виток аЬcd занимает разное пространственное положение, поэтому в обмотке якоря наводится переменная ЭДС. Если бы в машине не было коллектора, то ток во внешней цепи (в нагрузке В) был бы переменным, но посредством коллектора и щеток переменный ток обмотки якоря преобразуется в пульсирующий ток во внешней цепи генератора, т. е. ток, неизменный по направлению.
При положении витка якоря, показанном на рис. 24.1, ток во внешней цепи (в нагрузке) направлен от щетки А к щетке B. Известно, что ток во внешнем участке электрической цепи направлен от «плюса» к «минусу», поэтому нетрудно определить, что щетка А является положительной, а щетка В — отрицательной. После поворота якоря на 180° (рис. 24.2, а) направление тока в витке якоря изменится на обратное, так как проводники 1 и 2 поменяются местами. Однако полярность щеток, а следовательно, и направление тока во внешней цепи(в нагрузке) останутся неизменными (рис. 24.2, б). Объясняется это тем, что в тот момент, когда ток в витке якоря меняет свое направление, происходит смена коллекторных пластин под щетками. Таким образом, под щеткой А всегда находится пластина, соединенная с проводником, расположенным под северным магнитным полюсом N, а под щеткой В — пластина, соединенная с проводником, расположенным под южным полюсом S. Благодаря этому полярность щеток генератора остается неизменной независимо от пространственного положения витка якоря. Что же касается пульсаций тока во внешней цепи, то они намного ослабляются при увеличении числа витков в обмотке якоря при их равномерном распределении по поверхности якоря и соответствующем увеличении числа пластин в коллекторе.
I (а = 0) II (а = 90°) III (а = 180°) IV (а = 270°) V (а = 360°)
Рис. 24.2. К принципу действия генератора постоянного тока: —— ЭДС и ток в обмотке якоря; — — — то же, во внешней цепи генератора
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Коллекторный электродвигатель постоянного тока
Конструкция коллекторного электродвигателя постоянного тока
Статор — неподвижная часть двигателя.
Индуктор (система возбуждения) — часть коллекторной машины постоянного тока или синхронной машины, создающая магнитный поток для образования момента. Идуктор обязательно включает либо постоянные магниты либо обмотку возбуждения. Индуктор может быть частью как ротора так и статора. В двигателе, изображенном на рис. 1, система возбуждения состоит из двух постоянных магнитов и входит в состав статора.
Якорь — часть коллекторной машины постоянного тока или синхронной машины, в которой индуктируется электродвижущая сила и протекает ток нагрузки [2]. В качестве якоря может выступать как ротор так и статор. В двигателе, показанном на рис. 1, ротор является якорем.
Щетки — часть электрической цепи, по которой от источника питания электрический ток передается к якорю. Щетки изготавливаются из графита или других материалов. Двигатель постоянного тока содержит одну пару щеток или более. Одна из двух щеток соединяется с положительным, а другая — с отрицательным выводом источника питания.
Коллектор — часть двигателя, контактирующая со щетками. С помощью щеток и коллектора электрический ток распределяется по катушкам обмотки якоря [1].
Типы коллекторных электродвигателей
По конструкции статора коллекторный двигатель может быть с постоянными магнитами и с обмотками возбуждения.
Коллекторный двигатель с постоянными магнитами
Коллекторный двигатель постоянного тока (КДПТ) с постоянными магнитами является наиболее распространенным среди КДПТ. Индуктор этого двигателя включает постоянные магниты, которые создают магнитное поле статора. Коллекторные двигатели постоянного тока с постоянными магнитами (КДПТ ПМ) обычно используются в задачах не требующих больших мощностей. КДПТ ПМ дешевле в производстве, чем коллекторные двигатели с обмотками возбуждения. При этом момент КДПТ ПМ ограничен полем постоянных магнитов статора . КДПТ с постоянными магнитами очень быстро реагирует на изменение напряжения. Благодаря постоянному полю статора легко управлять скоростью двигателя. Недостатком электродвигателя постоянного тока с постоянными магнитами является то, что со временем магниты теряют свои магнитные свойства, в результате чего уменьшается поле статора и снижаются характеристики двигателя.
- Преимущества:
- лучшее соотношение цена/качество
- высокий момент на низких оборотах
- быстрый отклик на изменение напряжения
- Недостатки:
- постоянные магниты со временем, а также под воздействием высоких температур теряют свои магнитные свойства
Коллекторный двигатель с обмотками возбуждения
- По схеме подключения обмотки статора коллекторные электродвигатели с обмотками возбуждения разделяют на двигатели:
- независимого возбуждения
- последовательного возбуждения
- параллельного возбуждения
- смешанного возбуждения
Двигатели независимого и параллельного возбуждения
В электродвигателях независимого возбуждения обмотка возбуждения электрически не связана с обмоткой якоря (рисунок выше). Обычно напряжение возбуждения UОВ отличается от напряжения в цепи якоря U. Если же напряжения равны, то обмотку возбуждения подключают параллельно обмотке якоря. Применение в электроприводе двигателя независимого или параллельного возбуждения определяется схемой электропривода. Свойства (характеристики) этих двигателей одинаковы [3].
В двигателях параллельного возбуждения токи обмотки возбуждения (индуктора) и якоря не зависят друг от друга, а полный ток двигателя равен сумме тока обмотки возбуждения и тока якоря. Во время нормальной работы, при увеличении напряжения питания увеличивается полный ток двигателя, что приводит к увеличению полей статора и ротора. С увеличением полного тока двигателя скорость так же увеличивается, а момент уменьшается. При нагружении двигателя ток якоря увеличивается, в результате чего увеличивается поле якоря. При увеличении тока якоря, ток индуктора (обмотки возбуждения) уменьшается, в результате чего уменьшается поле индуктора, что приводит к уменьшению скорости двигателя, и увеличению момента.
- Преимущества:
- практически постоянный момент на низких оборотах
- хорошие регулировочные свойства
- отсутствие потерь магнетизма со временем (так как нет постоянных магнитов)
- Недостатки:
- дороже КДПТ ПМ
- двигатель выходит из под контроля, если ток индуктора падает до нуля
Коллекторный электродвигатель параллельного возбуждения имеет механическую характеристику с уменьшающимся моментом на высоких оборотах и высоким, но более постоянным моментом на низких оборотах. Ток в обмотке индуктора и якоря не зависит друг от друга, таким образом, общий ток электродвигателя равен сумме токов индуктора и якоря. Как результат данный тип двигателей имеет отличную характеристику управления скоростью. Коллекторный двигатель постоянного тока с параллельной обмоткой возбуждения обычно используется в приложениях, которые требуют мощность больше 3 кВт, в частности в автомобильных приложениях и промышленности. В сравнении с КДПТ ПМ, двигатель параллельного возбуждения не теряет магнитные свойства со временем и является более надежным. Недостатками двигателя параллельного возбуждения являются более высокая себестоимость и возможность выхода двигателя из под контроля, в случае если ток индуктора снизится до нуля, что в свою очередь может привести к поломке двигателя [5].
Двигатель последовательного возбуждения
В электродвигателях последовательного возбуждения обмотка возбуждения включена последовательно с обмоткой якоря, при этом ток возбуждения равен току якоря (Iв = Iа), что придает двигателям особые свойства. При небольших нагрузках, когда ток якоря меньше номинального тока (Iа < Iном) и магнитная система двигателя не насыщена (Ф
Iа), электромагнитный момент пропорционален квадрату тока в обмотке якоря:
,
- где M – момент электродвигателя, Н∙м,
- сМ – постоянный коэффициент, определяемый конструктивными параметрами двигателя,
- Ф – основной магнитный поток, Вб,
- Ia – ток якоря, А.
С ростом нагрузки магнитная система двигателя насыщается и пропорциональность между током Iа и магнитным потоком Ф нарушается. При значительном насыщении магнитный поток Ф с ростом Iа практически не увеличивается. График зависимости M=f(Ia) в начальной части (когда магнитная система не насыщена) имеет форму параболы, затем при насыщении отклоняется от параболы и в области больших нагрузок переходит в прямую линию [3].
Способность двигателей последовательного возбуждения развивать большой электромагнитный момент обеспечивает им хорошие пусковые свойства.
- Преимущества:
- высокий момент на низких оборотах
- отсутствие потерь магнетизма со временем
- Недостатки:
- низкий момент на высоких оборотах
- дороже КДПТ ПМ
- плохая управляемость скоростью из-за последовательного соединения обмоток якоря и индуктора
- двигатель выходит из под контроля, если ток индуктора падает до нуля
Коллекторный двигатель последовательного возбуждения имеет высокий момент на низких оборотах и развивает высокую скорость при отсутствии нагрузки. Данный электромотор идеально подходит для устройств, которым требуется развивать высокий момент (краны и лебедки), так как ток и статора и ротора увеличивается под нагрузкой. В отличии от КДПТ ПМ и двигателей параллельного возбуждения двигатель последовательного возбуждения не имеет точной характеристики контроля скорости, а в случае короткого замыкания обмотки возбуждения он может стать не управляемым.
Двигатель смешанного возбуждения
Двигатель смешанного возбуждения имеет две обмотки возбуждения, одна из них включена параллельно обмотке якоря, а вторая последовательно. Соотношение между намагничивающими силами обмоток может быть различным, но обычно одна из обмоток создает большую намагничивающую силу и эта обмотка называется основной, вторая обмотка называется вспомогательной. Обмотки возбуждения могут быть включены согласовано и встречно, и соответственно магнитный поток создается суммой или разностью намагничивающих сил обмоток. Если обмотки включены согласно, то характеристики скорости такого двигателя располагаются между характеристиками скорости двигателей параллельного и последовательного возбуждения. Встречное включение обмоток применяется, когда необходимо получить неизменную скорость вращения или увеличение скорости вращения с увеличением нагрузки. Таким образом, рабочие характеристики двигателя смешанного возбуждения приближаются к характеристикам двигателя параллельного или последовательного возбуждения, смотря по тому, какая из обмоток возбуждения играет главную роль [4].
- Преимущества:
- хорошие регулировочные свойства
- высокий момент на низких оборотах
- менее вероятен выход из под контроля
- отсутствие потерь магнетизма со временем
- Недостатки:
- дороже других коллекторных двигателей
Двигатель смешанного возбуждения имеет эксплуатационные характеристики двигателей с параллельным и последовательным возбуждением. Он имеет высокий момент на низких оборотах, так же как двигатель последовательного возбуждения и хороший контроль скорости, как двигатель параллельного возбуждения. Двигатель смешанного возбуждения идеально подходит для устройств автомобилей и промышленности (таких как генераторы). Выход двигателя смешанного возбуждения из под контроля менее вероятен, так как для этого ток параллельной обмотки возбуждения должен уменьшиться до нуля, а последовательная обмотка возбуждения должна быть закорочена.
Характеристики коллекторного электродвигателя постоянного тока
Эксплуатационные свойства двигателей постоянного тока определяются их рабочими, электромеханическими и механическими характеристиками, а также регулировочными свойствами.
Основные параметры электродвигателя постоянного тока
Постоянная момента
Для коллекторного электродвигателя постоянного тока постоянная момента определяется по формуле:
,
- где Z — суммарное число проводников,
- Ф – магнитный поток, Вб [1]