Cхема замещения асинхронного электродвигателя
Трехфазные асинхронные электродвигатели, или как их еще называют индукционные электродвигатели, являются наиболее распространенными в промышленности. Данный тип электродвигателя, аналогично машинам постоянного тока тоже обладают свойствами обратимости, и может работать как в двигательном, генераторном, так и в тормозных режимах – противовключение, динамическое торможение. Режим работы асинхронного электродвигателя характеризуют знаком и величиной скольжения.
Пожалуй, основным методом анализа установившихся режимов индукционного электродвигателя является использование эквивалентных схем замещения. В таком случае обычно рассматривают явление, которое относится к одной фазе многофазного двигателя при соединении его обмоток звездой.
Упрощенная картина магнитных потоков работающего асинхронного электродвигателя позволяет представить его в виде эквивалентной схемы:
Электромагнитная связь первичной и вторичной цепи осуществляется потоком взаимоиндукции Ф, индуктирующим в роторной обмотке ЭДС Е2S. Сопротивление индуктивное первичной цепи Х1 обусловлено наличием потока рассеивания, связанного только с этой цепью. Аналогично сопротивления Х2 обусловлено потоком рассеивания Ф25.
Частота тока ротора будет определяться скоростью его вращения относительно скорости вращения магнитного поля статора, то есть зависеть от скольжения и будет равна f2 = f1S.
Ток вторичной цепи при вращающемся роторе:
Также выражения для I2 может иметь:
Выше показанные выражения имеют не только различную форму записи, но и имеют совершенно разный физический смысл. А смысл его в том, что вместо вращающегося ротора можно рассматривать неподвижный, в котором будет индуцироваться ЭДС Е2. При этом индуктивное сопротивление будет равно Х2, а активное возрастет на величину так как
. При этом I1 останется прежним по фазе и величине, что не повлияет на потребляемую из сети мощность. Поскольку I1 и I2 не изменятся, то естественно и потери в первичных и вторичных цепях также не изменятся, соответственно мощность тоже не будет изменяться, а мощность развиваемая двигателем при вращении, будет равна мощности, потребляемой в добавочном сопротивлении
. Таким образом, эквивалентная схема замещения асинхронной машины может быть заменена схемой замещения с добавочным сопротивлением rд во вторичной цепи:
Т – образная схема замещения
После приведения первичной и вторичной ЭДС они будут равны Е1 = Е2 / и это дает возможность соединить эквивалентные точки и получить такую схему:
Недостатком Т – образной схемы замещения помимо сложностей расчета, является зависимость всех токов I1, I2 / , Iμ от скольжения s.
Из Т – образной схемы замещения видно, что в режиме холостого хода, при I2 / = 0 и s = 0, ток в контуре будет обуславливаться сопротивлениями намагничивающего контура и первичной цепи и совсем не будет зависеть от скольжения. Данное обстоятельство позволит вынести на зажимы электродвигателя намагничивающий контур и перейти к Г – образной схеме замещения.
Г – образная схема замещения
Данная схема замещения позволяет изучать процессы в асинхронном электродвигателе, которые имеют место при изменении скольжения электрической машины.
Учет контура намагничивания необходим при определении I1, который потребляется из сети. Но Г — образная схема замещения будет справедлива лишь при наличии определенных допущений:
- Все цепи имеют неизменные (постоянные) параметры. Это значит, что приведенное вторичное сопротивление r2 / не будет зависеть от частоты цепи вторичной (ротора), а насыщение не будет влиять на реактивное сопротивление статорных и роторных обмоток Х1 и Х2 / ;
- Полная проводимость намагничивающего контура принимается неизменной, а ток намагничивания, независимо от нагрузки, будет всегда пропорционален напряжению, приложенному к обмоткам;
- Потери добавочные не учитываются;
- Паразитные моменты, создаваемые высшими гармониками МДС, также не учитывают.
Следует также помнить и то, что в Г – образной схеме замещения в величины сопротивлений необходимо внести соответствующие поправки:
В выше перечисленных уравнениях величины имеющие индекс «дейст» соответствуют реальным значениям параметров асинхронной машины, а без индексов – те, которые используют в эквивалентной схеме.
Поскольку отношение r1/xμ довольно таки мало, то практически довольно часто принимают:
Обычно δ лежит в пределах 1,05 – 1,1.
Первичный ток I1 будет равен при любом скольжении:
Приведенный роторный ток:
Показанное выше выражение показывает, что ток ротора является функцией скольжения. При s = 0 I2 / = 0. При увеличении скольжения I2 / также будет расти, а при s = 1 достигнет своего максимума, или тока короткого замыкания, или пускового:
Если в роторной цепи отсутствует добавочное сопротивление (АД с КЗ ротором), пусковой ток может достигнуть довольно приличных значений, а именно 5 – 8 раз больше чем его номинальное значение.
Данная зависимость показана ниже:
Отношения пускового значения к номинальному является очень важным параметром для асинхронных машин с короткозамкнутым ротором, так как наличие пусковых токов приводит к просадкам напряжения, что особо ощутимо при использовании электродвигателей средней и большой мощности. Поэтому данная характеристика приводится в каталогах по выбору электрических машин.
Расчет параметров схемы замещения асинхронного
Двигателя по его паспортным данным
|
Схема замещения для эквивалентного асинхронного двигателя, питающегося от источника через внешнее сопротивление, представлена на рис.3.5.
Рис.3.5. Схема замещения эквивалентного двигателя, подключенного
к источнику питания через внешнее сопротивление
Параметры схемы замещения эквивалентного асинхронного двигателя в относительных единицах, приведенных к номинальной мощности двигателя определяются по его эквивалентным параметрам с помощью следующих выражений [6]:
— индуктивное сопротивление эквивалентного двигателя:
, (3.15)
— индуктивное сопротивление цепи намагничивания:
(3.16)
— активное сопротивление ротора:
(3.17)
Анализ статической устойчивости узла нагрузки,
Представленного асинхронного двигателя
Упростим схему замещения двигателя, представленную на рис.3.5, — перенесем ветвь намагничивания с сопротивлением в точку 1 к месту приложения ЭДС Е0. Преобразованная схема замещения представлена на рис.3.6.
Рис.3.6. Преобразованная схема замещения сети после вынесения ветви намагничивания к точке приложения ЭДС
В соответствии со схемой замещения асинхронного двигателя (рис.3.6) потребляемая им активная мощность равна
, (3.18)
где .
Из выражения (3.18) видно, что при неизменной эквивалентной ЭДС Е0 мощность двигателя является функцией скольжения. Графически эта зависимость представлена на рис.3.7.
Рис.3.7. Характеристики мощности асинхронного двигателя
при различных ЭДС источника питания
Механический момент сопротивления приводимого механизма принимается независимым от скольжения, т.е. . При этом допущении критерием устойчивости является условие
, устойчивая работа двигателя обеспечивается на восходящей части характеристики
при скольжениях, меньших критического
. Критическое скольжение соответствует предельному по устойчивости состоянию
и равно
. (3.19)
При критическом скольжении и ЭДС Е0 имеет место максимальное значение активной мощности:
(3.20)
В соответствии с выражением (3.18) при уменьшении ЭДС Е максимальная мощность двигателя также падает по квадратичной зависимости (рис.3.7). Критический режим наступает в точке К при , в этом режиме максимальная мощность двигателя равна номинальной. При дальнейшем снижении ЭДС работа двигателя будет невозможна: он остановится. Величина
определяется по выражению
(3.21)
Значение критического напряжения на зажимах двигателя с учетом принятых допущений может быть упрощенно определено по выражению:
. (3.22)
Степень запаса статической устойчивости оценивается по коэффициентам запаса:
, (3.23)
, (3.24)
где скольжение эквивалентного двигателя в исходном режиме, находится решением уравнения (3.18) относительно s при
.
(3.25)
, (3.26)
где U0 – напряжение на зажимах двигателя в исходном режиме.
Пример 3.1.
Узел нагрузки (рис.3.8),состоящий из четырех асинхронных двигателей, питается от источника питания неизменного напряжения через трансформатор Т мощностью 40 с
,
кВ,
кВ. Сопротивление системы, приведенное к ступени 110 кВ составляет 20,8 Ом.
Рис.3.8. Схема исследуемой сети
В цепи двигателя М4 установлен реактор РБ-10-1000-0,28 с реактивным сопротивлением Ом.