Под двигателем можно понимать устройство способное совершать работу

Естествознание. 11 класс

Конспект урока

Естествознание, 11 класс

Урок 7. Принцип работы тепловых двигателей

Перечень вопросов, рассматриваемых в теме:

  • Что такое двигатель?
  • Почему невозможен вечный двигатель?
  • Что такое тепловой двигатель?
  • Каковы особенности тепловых двигателей, которые необходимо учитывать для эффективного применения?

Глоссарий по теме:

Двигателем можно назвать любое устройство, способное совершать механическую работу

Коэффициентом полезного действия теплового двигателя (КПД) называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Коэффициент полезного действия любого теплового двигателя меньше единицы и выражается в процентах. Невозможность превращения всего количества теплоты, полученного от нагревателя, в механическую работу является платой за необходимость организации циклического процесса и следует из второго закона термодинамики.

В реальных тепловых двигателях КПД определяют по экспериментальной механической мощности N двигателя и сжигаемому за единицу времени количеству топлива. Так, если за время t сожжено топливо массой m и удельной теплотой сгорания q, то:

Для транспортных средств справочной характеристикой часто является объем V сжигаемого топлива на пути s при механической мощности двигателя N и при скорости υ . В этом случае, учитывая плотность r топлива, можно записать формулу для расчета КПД:

Адиабати́ческий, или адиаба́тный процесс (от др.-греч. ἀδιάβατος «непроходимый») — термодинамический процесс в макроскопической системе, при котором система не обменивается теплотой с окружающим пространством.

Циклические тепловые двигатели – тепловые двигатели, работающие по циклу.

Процесс нагрева или охлаждения газа при постоянном объеме называется изохорным.

Процесс нагрева или охлаждения газа при постоянном давлении называется изобарным.

Основная и дополнительная литература по теме урока:

  1. Громов С. В., Родина Н. А.. Физика – М. : Просвещение, 2001.
  2. Дерябин В. М. Законы сохранения в физике. – М.: Просвещение, 1982.
  3. Перельман Я.А. Занимательная физика. Книга 2. М.:Наука, 1982г.

Теоретический материал для самостоятельного изучения

Естественными двигателями являются любые живые организмы. Но работы мускул человеку всегда было мало, и со временем, еще задолго до появления науки, человек научился использовать средства, заменяющие свои физические усилия. С древних времен человек «приручил» силу ветра, воды, воздуха для передвижения и совершения механической работы. С тех времен до сегодняшних дней человек осуществляет попытки создания вечного двигателя. Возможно ли это?

Идея использования сил природы для совершения работы и увеличения силы человека привлекала с древних времен с создания простейших механизмов. Позже появились ветряные и водяные мельницы (упоминание о первых водяных мельницах относится к началу нашей эры).

В средневековье появляются уже достаточно совершенные водяные двигатели, использующиеся для различных нужд, например, как подъемные устройства (см. Рис. 2).

Рис.2. Подъемные устройства

Усложнение механизмов привело к идее построения вечного двигателя, по-латыни perpetuum mobile. Под таким двигателем понимали некоторое хитроумное устройство, которое без каких-либо внешних воздействий могло бы двигаться и совершать полезную механическую работу сколь угодно долго. Идея вечного двигателя была очень популярна в 17 – 18 веках.

Читайте также:  Обработка уплотнителей дверей автомобиля силиконом зимой

Развитие науки термодинамики и строгие опыты Джоуля показали, что механическое движение никогда не исчезает бесследно. Энергия механического движения переходит в энергию хаотического движения частиц вещества. Закон сохранения энергии, основанный на опытных фактах, запрещает существование вечного двигателя. Любой двигатель является устройством способным совершать упорядоченную макроскопическую работу на основе преобразования энергии из одного вида в другой.

В самых первых двигателях механическая энергия ветра и воды преобразовывалась в механическую энергию вращающегося колеса. Позднее появились тепловые двигатели.

Развитие науки об электричестве привело к появлению электродвигателей, преобразующих энергию электрического поля в механическую энергию и наоборот.

Наконец в 20 веке человек научился преобразовывать в механическую энергию внутреннюю энергию атомных ядер.

Идея использования тепла для совершения механических действий также пришла из глубокой древности. Одно из первых дошедших до нас изобретений принадлежит Герону Александрийскому, жившему приблизительно за 120 лет до нашей эры. Соответствующее устройство, которое он назвал «эолипилом».

В шаре, из которого выходят две г-образные трубки находится вода. При нагревании вода закипает, и образующийся пар, выходя из трубок, вращает сосуд. Каждая трубка при этом работает как реактивный двигатель.

Эолипил Герона являлся игрушкой и не выполнял действительно полезной работы. Подобные игрушки, например, плавающий на реактивной паровой тяге кораблик, несложно сделать самому. Реальный двигатель, работающий на основе реактивной тяги, является неэффективным. В последующих устройствах, в которых тепловая энергия преобразовывалась в механическую, горячий водяной пар толкал поршень в цилиндре, что являлось более эффективным. Далее создаются паровые машины (первая — Ползуновым, дошедшая до наших дней — Уаттом) и циклические тепловые двигатели, работающие продолжительное время и возвращающиеся в исходное состояние (по циклу). Термодинамический цикл Папена сопровождается сменой изобарного и изохорного процессов, основанных на нагревании и охлаждении газа при постоянном объеме или давлении.

Устройство любого теплового двигателя достаточно сложна. Чтобы понять принцип работы тепловых машин, рассмотрим двигатель, состоящий из цилиндра с поршнем, который может перемещаться вдоль цилиндра в определенном диапазоне.

Рис.4 Тепловой двигатель

Данный двигатель состоит из цилиндра с поршнем, который может перемещаться вдоль цилиндра в определенном диапазоне. В объеме цилиндра ограниченного поршнем находится газ. Поднимаясь вверх, цилиндр может поднять некоторое тело, то есть совершить полезную механическую работу.

Пусть в начальном состоянии цилиндр в отсутствие груза находится в нижнем состоянии. Подвесим груз и начнем нагревать газ в цилиндре, для чего подсоединим к цилиндру нагреватель. Сначала газ расширяться не будет, поскольку давление снизу недостаточно для подъема поршня. Процесс нагрева или охлаждения газа при постоянном объеме называется изохорным. Все передаваемое газу тепло идет на нагрев газа, при этом его давление возрастает. Этот процесс и соответствующий ему график изображен на Рис. 5а.

Читайте также:  Чип тюнинг бмв х6 е71 306л с

Когда давление под поршнем возрастет достаточно для того, чтобы сила давления уравновесила вес поршня и груза, поршень начнет подниматься (Рис. 5б). Поскольку вес поршня и груза не изменяются, сила давления, а значит, и само давление остаются постоянными. При этом температура и объем газа увеличиваются. Процесс нагрева или охлаждения газа при постоянном давлении называется изобарным. Его график изображен на Рис. 5б. После достижения верхней точки наш двигатель совершит полезную работу. Поднятый груз можно отсоединить. Но, если мы хотим продолжить работу по циклу, необходимо вернуть поршень в нижнее положение.

Для этого газ необходимо охладить, следовательно, нужно убрать нагреватель и привести в тепловой контакт с цилиндром некоторое холодное тело. Тогда сила давления газа будет больше веса поршня. Поэтому первоначально процесс охлаждения газа пойдет без изменения объема (Рис. 5в). Это тоже изохорный процесс, но с уменьшением давления.

После того, как давление газа упадет настолько, что сила давления будет уравновешивать вес поршня, дальнейшее охлаждение газа будет сопровождаться уменьшением его объема. То есть поршень начнет двигаться вниз (Рис. 5г). Так же, как и процесс 2-3 процесс 4-1 будет происходить при постоянном давлении, то есть будет изобарным. Заметим, что соответствующий процесс на диаграмме p-V изобразился в виде замкнутой направленной линии (в данном случае – прямоугольника). Такой термодинамический процесс называется термодинамическим циклом.

Таким образом, для мысленного конструирования теплового двигателя нам потребовался сосуд с газом, (газ называется рабочим телом), нагреватель и холодное тело. Оказывается, что эти принципиальные элементы можно найти в любом тепловом двигателе.

Термодинамические циклы, соответствующие тепловым двигателям могут иметь вид разнообразных замкнутых кривых. В любой конструкции принцип работы двигателя остается неизменным.

  • Любой двигатель является устройством способным совершать упорядоченную макроскопическую работу на основе преобразования энергии из одного вида в другой.
  • Принцип работы любого циклического теплового двигателя заключается в том, что взятое от горячего тела тепло при выполнении циклического процесса рабочим телом идет на совершение механической работы. При этом часть этого тепла отдается некоторому холодному телу.
  • Тепловой двигатель (паровая машина) сыграл и продолжает играть чрезвычайно важную роль в развитии нашей цивилизации. И, несмотря на то, что с конца XIX столетия во многих случаях паровая машина была заменена электрическим двигателем, она сыграла особую роль в техническом прогрессе человечества, а сотни мастерских конструкций тепловых двигателей представляют собой образцы высокого взлета научно-технической, инженерной мысли и творчества человека во все времена.

Примеры и разбор решения заданий тренировочного модуля:

Читайте также:  Газ 21 кузница тест драйва

Задание 1. Вставьте пропущенные слова: «Под двигателем можно понимать ________ устройство, способное совершать ______ работу».

Варианты ответов: любое, реактивное; физическую; паровое; механическую

Правильный вариант: Под двигателем можно понимать любое устройство, способное совершать механическую работу.

Задание 2. Добавьте подпись названий для каждой модели реактивного двигателя.

Паровая машина Уатта

Паровая машина Уатта

Водяная мельница

Эолипил Герона

Естествознание. 11 класс

Тепловые двигатели

Принцип работы тепловых двигателей

Необходимо запомнить

Под двигателем можно понимать любое устройство, способное совершать механическую работу. Естественными двигателями являются любые живые организмы. Задумываясь об увеличении собственной силы и получении энергии, человек с древних времен «приручал» силу ветра, воды, воздуха для передвижения и совершения механической работы. Совершенствуя простые механизмы, человек осуществляет попытки создания вечного двигателя. Развитие термодинамики показало, что механическое движение никогда не исчезает бесследно и в силу закона сохранения энергии существование вечного двигателя невозможно.

Использование тепла и создание первых тепловых двигателей возникло еще за 120 лет до н.э. (эолипил Герона). Далее создаются паровые машины (Ползунов, Уотт) и циклические тепловые двигатели, работающие продолжительное время и возвращающиеся в исходное состояние (по циклу). Термодинамический цикл Папена сопровождается сменой изобарного и изохорного процессов, основанных на нагревании и охлаждении газа при постоянном объеме или давлении.

  • Любой двигатель является устройством способным совершать упорядоченную макроскопическую работу на основе преобразования энергии из одного вида в другой.
  • Принцип работы любого циклического теплового двигателя заключается в том, что взятое от горячего тела тепло при выполнении циклического процесса рабочим телом идет на совершение механической работы. При этом часть этого тепла отдается некоторому холодному телу.

Интерактивная модель теплового двигателя

Тепловые двигатели

Двигателем можно назвать любое устройство, способное совершать механическую работу

Коэффициентом полезного действия теплового двигателя (КПД) называется отношение работы, совершаемой двигателем, к количеству теплоты, полученному от нагревателя:

Коэффициент полезного действия любого теплового двигателя меньше единицы и выражается в процентах. Невозможность превращения всего количества теплоты, полученного от нагревателя, в механическую работу является платой за необходимость организации циклического процесса и следует из второго закона термодинамики.

В реальных тепловых двигателях КПД определяют по экспериментальной механической мощности $N$ двигателя и сжигаемому за единицу времени количеству топлива. Так, если за время $t$ сожжено топливо массой $m$ и удельной теплотой сгорания $q$, то

Для транспортных средств справочной характеристикой часто является объем $V$ сжигаемого топлива на пути $s$ при механической мощности двигателя $N$ и при скорости $\upsilon$. В этом случае, учитывая плотность $r$ топлива, можно записать формулу для расчета КПД:

Адиабати́ческий, или адиаба́тный проце́сс (от ἀδιάβατος «непроходимый») — в макроскопической системе, при котором система не обменивается с окружающим пространством. Серьёзное исследование адиабатических процессов началось в XVIII веке

Оцените статью