Паровой двигатель особенности конструкции

Когда автомобиль будет иметь паровой двигатель?

Так сложилось, что даже люди с техническим образованием мало что знают об этом устройстве. Сегодня мы и восполним этот пробел, вспомним, как устроен паровой двигатель, его принцип действия. Его преимущества, недостатки и применении в современных условиях. И немного о истории изобретения.

Паровая машина кардинально изменила картину мира, произвела революцию в промышленности, на транспорте, дала импульс для новых открытий. Она служила универсальным двигателем на протяжении XIX века, и даже с появлением механизмов, требующих высоких скоростей, не канула в лету. Вместо тихоходной паровой машины ученые разработали быстроходную турбину с одним из самых высоких к.п.д.

История изобретения парового двигателя

Упоминание о первых паровых машинах датировано первым столетием нашей эры. Устройство, описано Героном Александрийским ‒ пар выходил из сопл, закреплённых на шаре, и приводил в движение двигатель.

Правда, настоящая паровая турбина появилась в Египте в 16 веке. Ее изобрел араб Таги-аль-Диноме.

Подобную машину построил 1629 году итальянский инженер Джованни Бранка. То есть, как только в обществе наступило экономическое благополучие и возникла необходимость в данном механизме, его тот час же изобрели.

В конце 17 века были созданы ещё две модели: в Испании двигатель сконструировал Аянс де Бомонт, а в Англии Эдвард Сомерсет в 1663 году установил паровую установку для закачки воды в Большую башню замка Реглан. Но все проекты быстро сворачивались и забывались. Тогда, как впрочем, и сейчас все новое не воспринималось большинством, и деньги на разработку никто давать не решался.

Паровой котёл создал француз Дени Папен. Он же изобрёл и предохранительный клапан для стравливания избыточного давления. Дело в том, что высокое давление, создаваемое паром, приводило к частым взрывам.

Кстати, в то же время появилось и расхожее выражение: «выпустить пар», которое означало ‒ успокоить нервы, пошумев на окружающих, без сноса собственного котелка и без жертв среди мирного населения.

Но на этом история паровых двигателей не прервалась. Англичанин Томас Ньюкомен в 1712 году сделал шахтный насос для подачи воды на верх. Двигатель Ньюкомена стал пользоваться спросом, с его массового выпуска началась английская промышленная революция.

В России первую паровую машину в 1763 году спроектировал И.И.Ползунов. С ее помощью приводились в действие воздуходувные меха на заводах.

А француз Николас-Йозеф Куньо шесть лет спустя сконструировал первую паровую телегу. Она приводила в движение сельскохозяйственные механизмы.

А в 1788 году Джон Фитч построил пароход, который вмещал 30 человек, и шел со скоростью до 12 километров в час.

В 1804 году на металлургическом заводе в Южном Уэльсе был испытан первый железнодорожный паровой поезд, его построил Ричард Тревитик.

Как устроен паровой двигатель. Принцип действия

Для работы паровой машины потребуется паровой котёл. Поступающий из него пар, расширяется и воздействует на поршень или же на лопатки паротурбины, затем их движение передаётся на другие механические части устройства.

Как устроен паровой двигатель показано на иллюстрации

Движение поршня через шток, ползун, шатун и кривошип передаётся на главный вал, который несет маховик, необходимый для снижения неравномерности вращения.

Эксцентрик, находящийся на главном валу, через эксцентриковую тягу воздействует на золотник, который управляет впуском пара в цилиндре. Пар из цилиндра выбрасывается в атмосферу или направляется в конденсатор.

Чтобы поддерживать постоянное число оборотов вала, при изменении нагрузки, на паровых машинах устанавливают центробежный регулятор, он автоматически изменяет сечение прохода пара, направляемого в паровую машину (при дроссельном регулировании) или момент отсечки наполнения (при количественном регулировании).

Поршень создает в цилиндре парового двигателя одну (две) полости переменного объёма, в них и происходят процессы сжатия и расширения.

Преимущества и недостатки

Основное преимущество паровой машины, как двигателя внешнего сгорания, отделение котла от самой машины. Это дает возможность использовать что угодно в качестве топлива хоть хворост, хоть урановое топливо, что выгодно отличает ее от двигателя внутреннего сгорания ‒ там для каждого типа требуется определённый вид горючего.

Заметнее всего это преимущество в случае с ядерным реактором, который не может производить механическую энергию, а вырабатывает лишь тепло, которое используют для получения пара, вращающего паровые турбины.

В двигателях внешнего сгорания можно использовать и другие источники тепла, например, энергию солнца или энергию разности температур океана на разной глубине.

Интересный факт, паровой локомотив хорошо работает на больших высотах, при чем эффективность двигателя не падает, а, наоборот, растет благодаря низкому атмосферному давлению.

Паровозы и сегодня используют в горной местности Латинской Америки и Китая, при том, что в равнинных районах они давно заменены на более современные типы локомотивов.

Даже в Швейцарии и в Австрии в ходу усовершенствованные тепловозы, работающие на сухом паре. Их разработали на основе модели SLM производства 1930 года. В конструкцию внесли ряд изменений: использовали роликовые подшипники, современную теплоизоляцию, новые виды топлива, специальные паропроводы и ряд других новшеств.

Благодаря этому потребление топлива уменьшилось на 60 процентов, а вес стал ниже, чем у дизельных и электрических аналогов, что актуально для железных дорог, проходящих в горной местности.

Среди других положительных качеств парового двигателя:

  • высокая надёжность;
  • возможность эксплуатации при значительных колебаниях нагрузки;
  • допустимость продолжительных перегрузок;
  • долговечность;
  • низкие расходы на эксплуатацию;
  • простота в обслуживании.

К недостаткам можно отнести:

  • наличие кривошипно-шатунного механизма;
  • низкий КПД по сравнению с другими типами двигателей.

Применение в настоящее время

Сегодня паровые машины нашли широкое применение в виде паровых турбин, которые работают как приводы электрогенераторов.

Паровая турбина состоит из вращающихся дисков, которые закреплены на одной оси. Этот узел называется ротором. Также есть статор ‒ его неподвижные диски чередуются с дисками ротора. На дисках ротора размещены лопатки, при попадании на них пара, механизм приходит в движение.

Аналогичные лопатки, только расположенные под противоположным углом, есть и на дисках статора. Они служат для перенаправления струи пара на следующий диск ротора.

Турбина преобразует энергию пара во вращательное движение без каких-либо дополнительных механизмов. То есть преобразование возвратно-поступательного хода во вращательное движение делать не нужно.

Читайте также:  Шины для автомобиля камаз 4310

Также у турбин меньшие размеры нежели у возвратно-поступательных машин, и они отличаются постоянным усилием на выходном валу. Ещё один плюс ‒ простая конструкция, а значит придётся меньше тратить средств на эксплуатацию.

Сфера использования паровых турбин ‒ производство электроэнергии. Более 85 процентов электрической энергии вырабатывают именно паровые турбины. Также их используют как судовые двигатели, в частности на подводных лодках и атомоходах.

Теперь вы знаете, как устроен паровой двигатель, что паровая машина, изобретённая ещё в первом столетии нашей эры, вовсе не анахронизм, а современное высокотехнологичное устройство, благодаря которому жизнь многих людей стала комфортнее.

Перспективы применения паровых машин на автомобилях имеют пока туманные очертания, но творческая мысль изобретателя не имеет границ и я с полной уверенностью могу предположить, что скоро появятся двигатели с элементами парового носителя

Подписывайтесь на наш блог, чтобы узнать много нового и интересного. Поделитесь этой информацией с друзьями в социальных сетях ‒ пусть они повысят свой технический уровень, ну и вам будет приятно иметь умных друзей.

Как работает паровой двигатель: принцип работы

Данный вид двигателя оставался актуальным с 1800 годов по 1950-ые, приводя в движение множество паровозов того времени, он считался лучшим, и практичным в своем роде. Не смотря на изменение его внешних форм и габаритов, его принцип работы всегда оставался неизменным.

В основе работы парового двигателя лежали ресурсы, с большой удельной теплоемкостью. Чем больше тепла отдавало сырье, тем оно больше подходило для заправки двигателя. Использовался уголь, дрова и даже жидкое топливо.

Принцип работы заключался в том, что сжигаемое сырье нагревало котлы с водой, те в свою очередь кипением выделяли огромное количество пара, который толкал поршень в нужном направлении.

Первый такт

Пар из паровой емкости перемещается в цилиндр, тем самым своим давлением толкая поршень. Поршень за ход в одну сторону (от нижней мертвой точки, до верхней) вращает колесо на пол оборота. В это время горячий пар перемещается с одной части цилиндра в другую через задвижку (синим цветом)

Выпуск

В момент когда поршень доходит до НМТ, задвижка передвигается, и остывшие пары выходят наружу через специальное окно. Пары выходя из этого отверстия, создают характерный звук.

Второй такт

В момент достижения поршня НМТ, происходит все в противоположную сторону относительно первого такта. Пар из верхней камеры перемещается в цилиндр, толкая поршень.

Выпуск

Выпуск происходит по уже отработанной схеме, все части пара выходят через все тоже окно. После выполнения такта, цикл повторяется заново.

Так как двигатель имеет как нижнюю мертвую точку, так и верхнюю, у паравозов двигателя состояли из двух цилиндров, это позволяло запустить двигатель из любого положения.

инженеров.net — научно-познавательный сайт

Wednesday , Mar 24th

Last update 08:30:58 AM GMT

Паровой двигатель, принцип работы

Паровые двигатели были установлены и приводили в движение большую часть паровозов в период начала 1800 и вплоть до 1950 годов прошлого века. Хочется отметить, что принцип работы этих двигателей всегда оставался неизменным, несмотря на изменение их конструкции и габаритов.

На анимированной иллюстрации приведен принцип работы парового двигателя.


Для генерации подаваемого на двигатель пара использовались котлы, работающие как на дровах и угле, так и на жидком топливе.

Первый такт

Пар из котла поступает в паровую камеру, из которой через паровую задвижку-клапан (обозначена синим цветом) попадает в верхнюю (переднюю) часть цилиндра. Давление, создаваемое паром, толкает поршень вниз к НМТ. Во время движения поршня от ВМТ к НМТ колесо делает пол оборота.

Выпуск

В самом конце движения поршня к НМТ паровой клапан смещается, выпуская остатки пара через выпускное окно, расположенное ниже клапана. Остатки пара вырываются наружу, создавая характерный для работы паровых двигателей звук.

Второй такт

В то же самое время, смещение клапана на выпуск остатков пара открывает вход пара в нижнюю (заднюю) часть цилиндра. Созданное паром в цилиндре давление заставляет поршень двигаться к ВМТ. В это время колесо делает еще пол оборота.

Выпуск

В конце движения поршня к ВМТ остатки пара освобождаются через все то же выпускное окно.

Цикл повторяется заново.

Паровой двигатель имеет т.н. мертвую точку в конце каждого хода, когда клапан переходит от такта расширения к выпуску. По этой причине каждый паровой двигатель имеет два цилиндра, что позволяет запускать двигатель из любого положения.

Паровой двигатель особенности конструкции

    Главная
  • Список секций
  • Технология
  • Паровой двигатель. Создание парового двигателя.

Паровой двигатель. Создание парового двигателя.

Автор работы награжден дипломом победителя II степени

В третьем классе я работал над проектом «Самолет. Принцип полета».

Я провел сравнительный анализ по нескольким направлениям. Изучил строение тела птицы и самолета типа «У-2». Конечная цель моего проекта состояла в том, чтобы самому создать летательный аппарат, который бы смог держаться в воздухе и планировать. У меня получилось. Мотор для своего самолета я позаимствовал у старой игрушки. И вот с тех пор меня заинтересовал следующий вопрос. Что заставляет двигаться самолеты, автомобили, паровозы, теплоходы, космические ракеты и т.д.

Поэтому в этом году тема моего проекта «Паровой двигатель. Создание парового двигателя».

Цель работы: Создать паровой двигатель, и применить силу его действия в учебном приборе, изображающем движение Земли вокруг Солнца.

1.Познакомиться с историей изобретения и применения первых паровых двигателей.

2.Изучить принцип работы парового двигателя.

3.Произвести все необходимые расчеты и изготовить паровой двигатель.

4.Сконструировать прибор — теллурий.

5.Привести в движение учебный прибор теллурий посредством работы парового двигателя.

Методы проектно-исследовательской деятельности:

Метод сбора и обработки данных.

Анализ справочных и литературных источников.

1.1 Появление первых паровых двигателей и их особенности .

С древнейших времен люди нуждались в двигательной силе, или в двигателях, которые бы приводили в действие приспособления для подачи воды на поля, вращение жерновов, и т.д. В странах Древнего Востока, в Древнем Египте, Индии для этой цели использовали животных и рабов. На смену живым двигателям пришло водяное колесо. В средние века водяные колеса приводили в действие прядильные и ткацкие станки. В 17 в. персы изобрели ветряную мельницу. С появлением таких мельниц началась история ветряных двигателей, использовавшихся для того, чтобы молоть зерно, качать воду. Водяные колеса и ветряные двигатели вплоть до 17 в. оставались единственными типами двигателей. Были у водяных колес недостатки: они имели малую мощность, работа их зависела от времени года и с трудом поддавалась регулировке. Постепенно стала остро ощущаться нужда в принципиально новом двигателе: мощном, дешевом, автономном и легкоуправляемом. Именно таким двигателем на целое столетие стала для человека паровая машина.

Читайте также:  Устройство двигателя форд мондео бензин

1.2 Создатели паровых двигателей.

В конце 17в. – начале 18в. во Франции, Англии, Швеции и других странах делались неоднократные попытки использовать энергию пара – создать паровой двигатель .

Самый первый в истории паровой двигатель представлял собой род насоса, при помощи которого откачивали воду, заливающую шахты. Его изобрел в 1689 г. Томас Сэйвери.

Сам изобретатель назвал ее «огневой машиной» и широко разрекламировал как «друга шахтеров».

В 1712 г. Томас Ньюкомен изобрел поршневой насос, приводимый в действие паром.

В 1760-е г. Джеймс Ватт улучшил конструкцию Ньюкомена и создал намного более эффективные паровые двигатели. Вскоре их стали использовать на фабриках для приведения в действие станков.

Первый турбогенератор Парсонса мощностью 1 МВт, установленный в промышленную эксплуатацию на одном из заводов в Германии (1899).

В 1884 г. английский инженер Чарльз Парсонс (1854-1931) изобрел первую применимую на практике паровую турбину. Его конструкции были настолько эффективны, что ими вскоре стали заменять паровые двигатели возвратно-поступательного действия на электростанциях.

Наиболее удивительным достижением в области паровых двигателей было создание полностью замкнутого, работающего парового двигателя микроскопических размеров.

Японские ученые создали его, используя методы, служащие для изготовления интегральных схем. Небольшой ток, проходящий по электронагревательному элементу, превращает каплю воды в пар, который движет поршень.

Паровые машины использовались как приводной двигатель в насосных станциях, локомотивах, на паровых судах, тягачах, и других транспортных средствах. Паровые машины способствовали широкому распространению коммерческого использования машин на предприятиях и явились энергетической основой промышленной революции 18 века. Вплоть до середины 20 в. паровые машины широко применялись в тех областях, где их положительные качества долговечность, невысокие эксплуатационные расходы, простота обслуживания и лёгкость реверсирования делали применение паровой машины более целесообразным, чем применение других двигателей, несмотря на её недостатки, вытекающие главным образом из наличия кривошипно-шатунного механизма. Характер теплового потребления этих предприятий определял тепловую схему установки и соответствующий ей тип теплофикационной паровой машины: с концевым или промежуточным отбором пара.

Область применения Паровых двигателей (Турбин).

В начале создания.

На тепловых электрических станциях

На пищевых предприятиях.

Преимущества паровых двигателей:

Использование различных видов топлива.

Эффективность не падает из за низкого атмосферного давления.

Хорошие тяговые характеристики.

Глава 2. Паровой двигатель, прицип работы.

2.1 Что такое паровой двигатель.

Паровой двигатель — тепловой двигатель внешнего сгорания, преобразующий энергию нагретого пара в механическую работу возвратно-поступательного движения поршня, а затем во вращательное движение вала. В более широком смысле паровая машина — любой двигатель внешнего сгорания, который преобразовывает энергию пара в механическую работу.

В паровозах (локомотивах) используются поршневые двигатели. В качестве двигателей используют также турбины, которые дают непосредственно вращательное движение, вращая ряд колес с лопатками. Паровые турбины приводят в действие генераторы электростанций и винты кораблей. В любом паровом двигателе происходит превращение тепла, вырабатываемого при нагреве воды в паровом котле (бойлере) в энергию движения. Тепло может подаваться от сжигания топлива в печи или от атомного реактора.

2.2Составляющие парового двигателя.

Для движения паровой машины необходим паровой котёл . Котёл , предназначен для генерации насыщенного или перегретого пара . Так же давление пара можно преобразовать в механическую работу. Для функционирования котла так же можно использовать энергию топлива , сжигаемого в своей топке , и электрическую энергию ( электрический паровой котёл ). Из котла давление пара поступает в паротурбины, где происходит дальнейшая работа механического двигателя.

2.3. Механизм работы парового двигателя.

Вода при кипении образует пар. В замкнутом пространстве пар образует давление. Давление поступает через трубу в золотниковый цилиндр и начинает движение золотника. Из золотника давление поступает в цилиндр. Поршень внутри цилиндра начинает вращаться. Благодаря поступательному движению поршня и золотника образует вращательное движение вала, который и крутит моховик. Обратный ход образуется за счет инерции вращения колеса.

Глава3. Практическая часть.

3.1Что знают мои сверстники про паровой двигатель.

В ходе моей научной работы я провел опрос среди одноклассников. Им предлагалось ответить, знают ли они какие-либо виды двигателей, и в каких областях они применяются. На этот вопрос смогли ответить лишь 27% опрошенных. Назван был реактивный двигатель и тепловой. Но сфера применения не была указана. Тогда я предложил им ответить на вопрос, знают ли они за счет чего приходит в движение машина, теплоход, паровоз, электровоз, самолет, ракета. У ребят мой вопрос вызвал затруднения. В ответах прозвучали слова «мотор», «двигатель». После опроса я раздал им тест, где им нужно было сопоставить понятия 2-х групп: В 1-ой группе были перечислены разные виды двигателей. Во 2-ой группе сферы их применения. С заданием справились 71% ребят, у 29% тест вызвал затруднения. Отсюда можно сделать вывод: что данная тема для моих сверстников еще не знакома.

3.2 Модель парового двигателя и теллурия.

После изучения всей теоретической части передо мной и моим наставником дедушкой Джемсиком Сергеевичем встало несколько задач:

Выбрать подходящую схему исходя из которой можно моделировать паровой двигатель.

Изучить механизм работы прибора, теллурия демонстрирующего движение Земли вокруг Солнца — теллурия. Конечно, земля крутиться вокруг солнечной системы, как и другие планеты солнечной системы по законам физики. Но наш прибор теллурий будет это демонстрировать с помощью работы парового двигателя.

Подобрать соответствующие материалы для создания модели.

Собрать модель парового двигателя, способного приводить в движение теллурий.

3.3. Этапы создания парового двигателя.

1-ый этап. Анализ чертежей и эскизов моделей парового двигателя и теллурия.

2-ой этап подбор соответствующих материалов.

1.Лист от ДСП. 2.Проволка толщиной 2мм. 3.Отрезки водопроводной тубы. 4.отрезки железной трубы. 5.Отрезки железа. 6.Саморезы. Болты, гайки, шурупы 7.Крепления. 8.Сухой спирт. 9.Краски.

Подбор необходимых инструментов: Паяльник, ножовка, рубанок, нож по металлу, молоток, сверла, наждачная бумага.

3-ий этап. В первую очередь принимаемся за изготовление модели теллурия.

Вот его оставляющие:

Начали работу с каркаса глобуса. Из проволок с помощью паяльника собрали модель глобуса. Вырезали материки из листа оцинкованного металла и припаяли их на соответствующие места. Покрасили.

Читайте также:  Тест драйвы машин rover

Далее нам предстояло изготовить шестеренки, которые должны вращать теллурий. Установили под глобусом. Модель Солнца сделали из шара от боулинга. Елочная игрушка стала луной. Движение всей конструкции осуществляется за счет шестеренки, а механическая сила будет поступать от парового двигателя.

4-ый этап. Сборка парового двигателя. Начинаем с создания парового котла. У дедушки были отрезки от железной трубы ⦱50мм. Приварили трубу, закрыли концы. Сверху поставили штуцер для шланга. Из него давление пара будет поступать в цилиндр. Котел наполнили соответствующим количеством воды. Нагревание воды будет происходить с помощью сухого горючего.

На 5-ом этапе мы конструировали остальные детали, парового двигателя это: Гильза, поршень, вал, моховик, золотник, цилиндр, шатун.

Цилиндр:Берем кусочки ПВХ трубы и отмечем нужную длину. Отрезаем нужные размеры и подчищаем края. Далее нам нужно сделать отверстия в цилиндрах. Благодаря им давление из одного цилиндра будет поступать в другой. Соединяем наши цилиндры друг к другу. В одном из цилиндров сверху делаем отверстие. Это нам нужно для подачи давления пара из котла. Концы цилиндра закрываем с помощью пластиковых шайб.

Поршень и золотник делаем из кусков холодной сварки, подгоняем под нужный размер и прикрепляем к гвоздю, формируем поршень, вставляем его в цилиндр размер не подошел, мы подогнали его до нужного чтобы он свободно мог двигаться в цилиндре. Таким же способом был изготовлен и золотник.

Шатун:Отрезаем гвозди необходимой длины и прикручиваем к одному краю гайки к другому краю металлическое кольцо, которое будет соединять шатун с моховиком.

Моховик.Его мы сделали из куска железа, которая до этого использовалась в динамике. Рядом с моховиком установили блок шкивов. Они нужны для снижения оборотов и увеличения силы вращения. От шкивов механическая работа поступит к теллурию с помощью каната.

6-щй этап. Далее нам предстоит отмерить нужное расстояние между деталями на деревянной платформе . Отмечаем нужные точки на опоре. Устанавливаем шатун на коленный вал и устанавливаем в опору моховика. Ставим наши цилиндры на места, которые были отмечены, и закрепляем с помощью самореза. Соединяем наш котел с цилиндром.

7-ой этап. Это самое волнительное. Мы запустили работу котла. Вода начала кипеть в замкнутом пространстве. Давление пара поступило в золотниковый цилиндр. Но нам не удалось получить нужное давление для вращения моховика. Тогда мы с дедушкой немного доработали нашу модель котла. Снова запустили котел вода начала кипеть, от давления пара началась работа золотника, от золотника началась работа поршня. Вращение золотника и поршня привели к работе моховика. Таким образом, мы смогли передать механическую работу моховика к нашему прибору, изображающему движение Земли вокруг солнца.

В начале моей научной работы перед нами стояла сложная задача. Нам не только нужно было создать модель теллурия, но еще и создать паровой двигатель который бы смог продемонстрировать вращение Земли вокруг Солнца. Это было сложно, в некоторых моментах казалась немного невозможным. Но благодаря моему дедушки, его знаниям физики, математики, моей смекалке и талантливым рукам мы смогли собрать весь наш прибор. Я смог узнать, что для работы нужен двигатель. И как работает двигатель, я понял в ходе моей научной работы.

Словарь технических слов.

Теллурий- ( от лат. tellus — «Земля», в родительном падеже — telluris ) — прибор для наглядной демонстрации годового движения Земли вокруг Солнца и суточного вращения Земли вокруг своей оси .

Двигатель устройство, преобразующее какой-либо вид энергии в механическую работу. Термин мотор заимствован в первой половине XIX века из немецкого языка (нем. Motor — «двигатель», от лат. mōtor — «приводящий в движение») и преимущественно им называют электрические двигатели и двигатели внутреннего сгорания .

Насо́с — гидравлическая машина, преобразующая механическую энергию приводного двигателя или мускульную энергию (в ручных насосах) в энергию потока жидкости, служащую для перемещения и создания напора жидкостей всех видов, механической смеси жидкости с твёрдыми и коллоидными веществами или сжиженных газов ] . Разность давлений жидкости на выходе из насоса и присоединённом трубопроводе обусловливает её перемещение.

Поршневой насос- (плунжерный насос) — один из видов объёмных гидромашин, в котором вытеснителями являются один или несколько поршней ( плунжеров ), совершающих возвратно-поступательное движение

То́пка — устройство для сжигания органического топлива с целью получения высоконагретых дымовых газов. Полученная тепловая энергия либо преобразуется в электрическую или механическую энергию, либо используется для технологических и других целей.

Паровая турбина -(перенаправление с Паротурбинный двигатель)

приводит ротор во вращение. Паровая турбина является одним из элементов паротурбинной установки (ПТУ). Паровая турбина и электрогенератор составляют турбоагрегат.

Давле́ние — физическая величина, численно равная силе, действующей на единицу площади поверхности перпендикулярно этой поверхности. В данной точке давление определяется как отношение нормальной составляющей силы <\displaystyle dF_> , действующей на малый элемент поверхности, к его площади.

Генерация электроэнергии-производство электроэнергии (электрического напряжения и тока) посредством преобразования её из других видов энергии с помощью специальных технических устройств.

Для генерации электроэнергии используют:

Электрический генератор — электрическую машину, в которой механическая работа преобразуется в электрическую энергию.

солнечную батарею или фотоэлемент — электронный прибор, который преобразует энергию электромагнитного излучения, в основном светового диапазона, в электрическую энергию.

Химические источники тока — преобразование части химической энергии в электрическую, посредством химической реакции (см. также Топливный элемент, Гальванический элемент).

Радиоизотопные источники электроэнергии;

Реактивный двигатель — двигатель, создающий необходимую для движения силу тяги посредством преобразования внутренней энергии топлива в кинетическую энергию реактивной струи рабочего тела .

Ине́рция — (от лат. inertiaбездеятельность , синоним: инертность ) — свойство тела оставаться в некоторых системах отсчёта в состоянии покоя или равномерного прямолинейного движения в отсутствие внешних воздействий, а также препятствовать изменению своей скорости (как по модулю, так и по направлению) при наличии внешних сил .

Шкив- (нидерл. schijf , англ. sheave ) — фрикционное колесос ободом или канавкой по окружности, которое передаёт движение приводному ремню или канату. В отличие от блока, шкив передаёт момент с вала на ремень (либо с ремня на вал); блок же вращается на оси свободно и обеспечивает исключительно изменение направления движения ремня или каната. Система из двух закреплённых на валах шкивов, между которыми находится кольцевой ремень, называется ремённой передачей.

Паровая машина. «https://ru.wikipedia.org/wiki/%D0%9F%D0%B0%D1%80%D0%BE%D0%B2%D0%B0%D1%8F_%D0%BC%D0%B0%D1%88%D0%B8%D0%BD%D0%B0»

Принцип действия «https://auto-ru.ru/parovoi-dvigatel.html

«Перышкин А. В. «Физика», учебник для 8 класса средней школы»

Оцените статью