Диагностические параметры
При решении практических задач технической диагностики при эксплуатации непосредственно измерить некоторые структурные параметры часто бывает невозможно, так как для этого необходимо произвести разборку машины. Поэтому в процессе диагностирования используют диагностические параметры-показатели, измерение которых не требует разборки оборудования или сборочной единицы. Диагностические параметры, используемые для оценки технического состояния машин, подразделяются на несколько типов.
Интегральныедиагностические параметры характеризуют техническое состояние группы элементов (например, давление в гидросистеме).
Простыепараметры связаны с техническим состоянием одного элемента (например, геометрический размер).
Единичныминазывают диагностические параметры, которые не могут быть разделены на несколько составляющих с помощью простых алгебраических действий.
Комплексныепараметры представляют собой совокупность нескольких простых параметров. Объединение нескольких простых параметров в один комплексный производится для сокращения количества контролируемых факторов при экспериментальных исследованиях. Комплексные и единичные параметры могут быть как интегральными, так и простыми.
Прямыедиагностические параметры непосредственно характеризуют техническое состояние объекта. К этой группе параметров относятся геометрические параметры технического состояния, а также ряд параметров рабочих процессов (например, зазор, давление в гидросистеме и пр.).
Косвенные диагностические параметры связаны с соответствующими параметрами технического состояния функциональной зависимостью и характеризуют изменение технического состояния объекта (системы) косвенным образом. Существенным недостатком косвенных диагностических параметров является то, что они вносят дополнительную погрешность в результаты диагностирования, обусловленную искажением сигнала в процессе формирования диагностического параметра.
Косвенные диагностические параметры, как правило, носят широкий информационный характер, так как формируются под действием изменения целого ряда (а не одного) параметров технического состояния.
К косвенным относят параметры сопутствующих процессов и ряд параметров рабочих процессов (например, состав выхлопных газов). При подборе диагностических параметров целесообразно отдавать предпочтение прямым параметрам, что обеспечивает большую точность диагностирования. Однако измерение прямых диагностических параметров в большинстве случаев требует частичной разборки машины. Чтобы избежать этого, приходится для оценки технического состояния использовать косвенные диагностические параметры.
Геометрические диагностические параметры характеризуют геометрические размеры элементов диагностируемого объекта и связи между ними. Примерами геометрических диагностических параметров являются зазоры, несоосность, люфт.
Диагностическиепараметры рабочих процессов характеризуют функционирование основных элементов объекта диагностирования. Эти параметры являются широко информативными и характеризуют общее состояние объекта. Примерами диагностических параметров рабочих процессов являются величина тормозного пути, мощность двигателя, состав отработанных газов и пр.
Диагностические параметры сопутствующих процессов являются косвенными показателями технического состояния объекта и отличаются невысокой точностью. Эти параметры широко информативные. В группу этих параметров входят виброакустические параметры, показатели теплового состояния механизма и пр.
В зависимости от характера проявления изменения технического состояния, возможных последствий отказа и применяемой аппаратуры различают диагностические параметры, измеряемые дискретно и непрерывно. Оценку диагностических параметров, измеряемых дискретно, проводят с помощью переносных и стационарных средств (микрометров, газоанализаторов), устанавливаемых на передвижных диагностических станциях или стационарных постах.
Оценку диагностических параметров, измеряемых непрерывно, производят с помощью встроенных диагностических средств (датчиков, манометров).
Методы и средства технического диагностирования
Для оценки диагностических признаков и заключения о техническом состоянии оборудования используют различные методы.
Методы диагностирования классифицируют в зависимости от характера и физической сущности распознаваемых признаков и измеряемых параметров технического состояния объектов.
Акустические методы технического диагностирования, основаны на измерении амплитуды и частоты звуковых колебаний, излучаемых объектом в процессе работы. Изменение технического состояния элементов машин в процессе работы — увеличение зазоров в сопряжениях, изменение нагрузочного, скоростного и теплового режимов работы деталей вследствие их изнашивания, старения, коррозии вызывает соответствующие изменения параметров звуковых колебаний. Сопоставляя эмпирические значения звуковых сигналов с эталонными, можно судить о техническом состоянии объекта в данный момент времени и прогнозировать его изменение на некоторый период.
Поскольку в формировании звукового потока участвуют практически все подвижные объекта диагностирования, акустические методы позволяют оценить техническое состояние большинства основных элементов по величинам излучаемых ими звуковых сигналов. Основная сложность при этом состоит в выделении определенного сигнала из общего спектра и распознавании его принадлежности тому или иному элементу машины. Для оценки звукового сигнала (выделения его из общего спектра и измерения) используют специальную аппаратуру — спектрометры, шумомеры, осцилографы.
Акустические методы диагностирования применяют в основном для оценки технического состояния элементов, силовых уста-новок, механических и гидромеханических передач.
Виброметрическиеметоды основаны на измерении параметров вибрации объекта диагностирования. Уровень вибрации объекта в процессе работы определяют техническим состоянием его основных элементов: размерами зазоров в сопряжениях, износом деталей. Поэтому, измеряя параметры вибрации (частоту, амплитуду, ускорение) и сравнивая их с эталонными значениями, можно оценивать техническое состояние объекта диагностирования в данный момент времени и прогнозировать его изменение на некоторый период.
Рис.21. Блок-схема виброметрической аппаратуры.
Приведенная на рис.21 блок-схема иллюстрирует устройство и принцип действия виброметрической аппаратуры. Установленный непосредственно на поверхности объекта датчик 1 регистрирует механические вибрационные колебания и передает соответствующие электрические сигналы на усилитель-анализатор 2. Каскад электронных интеграторов обеспечивает измерение амплитуды, скорости и ускорения механических колебаний. Набор частотных фильтров 3 позволяет настраивать прибор на соответствующий рабочий частотный диапазон. Кроме того, фильтры служат для подавления помех, обусловленных низко- и высокочастотными шумами. Запись сигнала производят с помощью самописца 4 или какого-либо другого регистрирующего прибора (например, измерительного магнитофона), подключаемого на его место.
Поскольку параметры вибрации, используемые в качестве диагностических, являются широко информативными и формируются под воздействием большого количества элементов объекта, основной сложностью при диагностировании виброметрическими методами является, как и в предыдущем случае, распознавание принадлежности сигнала определенному элементу.
Виброметрические методы используют для диагностирования элементов силовых установок, механических и гидромеханических передач.
Методы технического диагностирования по составу масел наиболее универсальны и широко применяются для экспресс-оценки состояния двигателей, элементов трансмиссии, гидравлических систем управления, а также смазочных материалов и рабочих жидкостей.
Основными диагностическими параметрами в этих случаях являются концентрация, дисперсионный и элементарный составы механических примесей, кинематическая вязкость масла, кислотное и щелочное числа, а также содержание в масле воды.
Для анализа содержания механических примесей в масле используют химический, спектральный, радиометрический, активационный и оптико-физические методы.
Функциональные методы диагностирования основаны на измерении косвенных параметров объекта, характеризующих техническое состояние его элементов через уровень функционирования. В зависимости от характера распознаваемых признаков изменения технического состояния объекта диагностирование функциональными методами может производиться по мощностным и технико-экономическим показателям, тепловому состоянию, герметичности рабочих объемов, тормозному пути.
Метод оценки технического состояния машин по мощностным и технико-экономическим показателям используют как для общего, так и для углубленного поэлементного диагностирования. В основе метода лежат зависимости эффективности использования машины от технического состояния ее основных элементов. В качестве диагностических параметров в этом случае используют эффективную мощность двигателя, силу тяги, рабочую скорость, грузоподъемность. В зависимости от характера измеряемых диагностических параметров подбирают соответствующее диагностическое оборудование.
Методы диагностирования машин по тепловому состоянию и герметичности рабочих объемов имеют более узкую область применения. Их в основном используют для оценки технического состояния элементов двигателей и гидросистем.
Поскольку ни один из перечисленных методов не позволяет произвести полную оценку технического состояния машины, при углубленном техническом диагностировании часто используют комбинированные виброакустические методы и совокупность функциональных методов.
Средства технической диагностики оборудования для различных методов диагностики приведены в табл.5.
Служба технической диагностики
В основу организации технической диагностики оборудования должен быть положен принцип специализации и разделения труда, когда диагностирование проводится не мастерами и слесарями, занимающимися ремонтом, а специальной службой технической диагностики, в которой должны быть заняты специально подготовленные кадры с современными контрольно-измерительными приборами и оборудованием для проверки технического состояния оборудования, что обеспечивает более высокую производительность и качество диагностических работ.
Таблица 6.Методы и средства технической диагностики оборудования.
Для выполнения работ по диагностированию служба технической диагностики имеет в своем распоряжении стационарные средства диагностирования, сосредоточенные на специализированном участке диагностики или непосредственно на участке технического обслуживания.
Службой технической диагностики руководит инженер-диагност, который в своей работе подчиняется главному механику. Инженер-диагност обязан:
— составлять план-график диагностирования оборудования и обеспечивать своевременное его выполнение;
— проводить анализ результатов диагностирования;
— составлять график технического обслуживания диагностического оборудования и следить за его выполнением;
— следить за своевременным составлением и обеспечением мастеров бланками диагностических карт;
— вести отчетно-учетную документацию.
Основным документом при диагностировании является диагностическая карта, в которой фиксируются результаты диагноза, дается заключение о необходимом объеме и содержании работ по техническому обслуживанию и ремонту.
В диагностической карте отмечают номинальные и допустимые величины основных параметров технического состояния сборочных единиц оборудования, а также результаты замеров при диагностировании и после регулировки.
При проведении ТО и ремонта диагностическая карта служит документом для проведения соответствующего объема работ по ТО и ремонту оборудования.
Записанные в карте величины показателей используют для прогнозирования технического состояния сборочных единиц и определения их остаточного ресурса.
Раздел VI.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
КОМПЬЮТЕРНАЯ ДИАГНОСТИКА АВТОМОБИЛЯ: КАК И ДЛЯ ЧЕГО ПРОВОДИТСЯ?
Добрый день, сегодня мы узнаем, что называется компьютерной диагностикой автомобиля, для чего и когда она проводится, а также какое оборудование применяется для этого процесса. Кроме того, расскажем про то, как правильно необходимо проводить автодиагностику при помощи специального оборудования и можно ли проводить эти действия самостоятельно, не прибегая к услугам профессиональных станций технического обслуживания транспортных средств. В заключении мы поговорим о самых распространенных видах или операциях компьютерной диагностики автомобилей, а также как часто нужно делать эту процедуру по проверке систем машины на выявление ошибок и возможных сбоев.
Большинство современных автомобилей просто напичканы всевозможными датчиками и устройствами различных систем транспортного средства, таких как двигатель, топливная система, система отработанных газов, подвеска и прочие. Из-за появления таких устройств в машинах, появилась востребованность в компьютерной диагностике, которая способна достаточно быстро и эффективно определить основные неполадки, а также сбои в той или иной системе автомобиля.
Для того, чтобы правильно определить ту или иную неполадку или неисправность в системах (узлах) современного транспортного средства, необходимо знать, а также понимать, что такое компьютерная диагностика автомобиля, как и для чего она проводится. Данные вопросы мы и обсудим в нашем рассказе, чтобы получить исчерпывающее представление об автодиагностике автомобиля при помощи специального компьютерного оборудования, а также операциях (видах) этого процесса в отдельности по каждой системе транспортного средства. Кроме того, рассмотрим часто задаваемый вопрос многими автовладельцами: «Чем отличается компьютерная диагностика от традиционной, классической?».
1. Для чего проводится компьютерная диагностика автомобиля?
Компьютерной диагностикой автомобиля называется процесс, при котором осуществляется считывание кодов неисправностей и ошибок с основных узлов транспортного средства, их стирание, а также возможная последующая коррекция. Для того, чтобы осуществить данный процесс используется специальное дилерское или аналогичное оборудование в виде сканеров. К таким системам относятся мультифункциональные авто стенды, портативные сканеры, ридеры и системы ОЕМ (оригинальный производитель оборудования). Справочно отметим, что почти все современное диагностирующее оборудование, а также программное обеспечение, позволяют производить считывание и учет даже небольшого изменения в функционировании систем управления двигателем, трансмиссией, приборной панели и прочих механизмов транспортного средства.
Все данные, которые считываются сканером отображаются на одноканальном мультиметре, как правило, в режиме реального времени. Кроме того, на таком устройстве можно одновременно отслеживать до 5-ти графиков с различными параметрами, причем допускается выбор наиболее удобного вида отображения показателей. Системы диагностики, которые сегодня повсеместно применяются на специализированных станциях технического обслуживания, позволяют производить перекодирование показателей. Перекодирование параметров и показателей осуществляется с целью повышения характеристик, которые относятся к мощности автомобиля. Операция по улучшению таких показателей называется чип-тюнингом транспортного средства.
Благодаря специальному диагностическому оборудованию автомобиля довольно часто осуществляется перенастройка блока управления, для того чтобы оптимизировать его под определенную комплектацию транспортного средства. Такая настройка включает корректировку оборотов холостого хода двигателя, а также регулировку топливной системы. При помощи специальных дополнительных программ, можно перепрограммировать всю авто электронику под интерфейс обновленных моделей данной линейки, которые только что сошли с конвейера производителя. Система такого типа в автоматическом режиме идентифицируют отличия, при этом не требуя выставления вручную первоначальных, а также конечных показателей.
Главной целью проведения компьютерной диагностики транспортного средства все же является установка неисправностей, при появлении того или иного индикатора на панели приборов. Как правило, основной причиной для проведения такой процедуры становится загорание пиктограммы ошибок на соответствующем табло машины, как мы отметили ранее или, когда автовладелец сам замечает некорректность в работе механизмов (узлов, систем) автомобиля. Бывают такие случаи, когда покупатель машины просто хочет удостовериться перед покупкой машины с пробегом , в каком состоянии находится транспортное средство. Справочно отметим, что по рекомендациям большинства специалистов по обслуживанию и ремонту транспортных средств, желательно проводить компьютерную диагностику автомобиля, как минимум 1 раз в год.
2. Как и каким образом проводится компьютерная диагностика?
Компьютерная диагностика автомобиля проводится при помощи подключения через специальные диагностические разъемы разного рода оборудования к бортовым системам транспортного средства. При проведении, так сказать «глубокой» диагностики систем машины, подключают сканер со сложным (профессиональным) программным обеспечением, который способен считывать все транслируемые автомобильные коды с ошибками и неисправностями. После отображения кодов на экране сканера, они расшифровываются при помощи определенных программ, а далее на основе полученной и собранной информации делается заключение о наличии возможных сбоев или неисправностей в той или иной системе машины.
Компьютерная диагностика автомобиля делится на ряд операций :
— Диагностика элементов подвески : данная операция требуется в том случае, когда обнаруживается неравномерный износ шин, появление стуков или посторонних звуков при осуществлении резких маневров, например, поворотов, а также при движении на постоянной скорости, в том числе по неровному дорожному полотну. Кроме того, такой вид диагностики необходим еще в том случае, когда замечен снос передней или задней оси при резком торможении или входе в поворот, а также тогда, когда раньше времени начинает срабатывать тормозной помощник, система АБС. Также немаловажной причиной для проведения такой процедуры является обнаружение увеличенного свободного хода рулевого колеса автомобиля.
— Компьютерная диагностика силовой установки : данная процедура осуществляется в том случае, когда появляются признаки перегревания двигателя, увеличение расхода топлива, мотор начинает работать неустойчиво (плавают обороты на холостом ходу) или заводится с трудом. Кроме того, к причинам проведения компьютерной диагностики двигателя также относят случаи, когда двс чувствительно потерял мощность, появились посторонние звуки, вибрация со стороны мотора во время движения или стоянки. Диагностика такого вида позволяет проверить систему впрыска, электроснабжения и уровень компрессии двигателя.
— Компьютерная диагностика автоматической трансмиссии : такая процедура осуществляется тогда, когда перестает включаться одна из скоростей автоматической коробки передач или имеются отчетливые рывки, шумы, пробуксовка при переключении передач, повышен расход топлива, а также замечено подтекание трансмиссионного масла в области поддона. Во время диагностики проводят считывание кодов выявленных ошибок блока управления трансмиссией. Кроме того, проводится анализ полученных показателей датчиков системы трансмиссии, а именно температуры рабочей жидкости, положения дроссельной заслонки и положение селектора коробки передач.
Компьютерная диагностика автомобиля, какого бы вида она не была является эффективным и современным способом для детальной проверки электронных систем транспортного средства с главной целью -обнаружения, а также предупреждения автовладельца о сбоях и неисправностях в том или ином узле машины. Благодаря этой процедуре своевременно удается получить достоверную информацию о текущем состоянии основных и дополнительных блоков управления, систем, а также узлов автомобиля.
В заключении отметим, что если сравнивать компьютерную диагностику транспортного средства с классической (ручной, при помощи подручных устройств), то первый способ является вершиной современных диагностических технологий, так как помогает обнаруживать абсолютно все имеющиеся сбои и неисправности, которые имеются на данный момент в системах (узлах) автомобиля. Кроме того, такая процедура не требуют больших денежных, временных и трудовых затрат.