Особенности малых холодильных машин

Строй-справка.ру

Отопление, водоснабжение, канализация

Навигация:
Главная → Все категории → Монтаж холодильных установок

Для ремонта малых холодильных машин, входящих в состав разнообразного торгового оборудования, оборудования общественного питания и пищевой промышленности, лабораторий (сборные холодильные камеры, холодильные и провизионные шкафы, прилавки, витрины, автоматы газированной воды, охладители и пр.), характерно использование метода после-осмотровых ремонтов в сочетании с методом планово-предупредительного ремонта.. Надзор за малыми холодильными машинами и их обслуживание осуществляет выездной мастер базового холодильного ремонтного предприятия — ремонтно-производственного комбината, на крупном промышленном предприятии — мастер специализированного участка цеха или производства централизованного ремонта.

Техническое обслуживание малых холодильных машин проводят, главным образом, по подрядному договору с централизованной ремонтной организацией. Средние и капитальные ремонты холодильных агрегатов малых холодильных машин экономически целесообразно проводить непосредственно в цехах ремонтно-производственных комбинатов, где достигается высокая производительность труда и наименьшая себестоимость ремонтных работ. При значительных расстояниях до базы централизованного ремонта экономическая эффективность ремонта снижается в результате роста транспортных расходов. Для такого рода оборудования экономически оправданным пределом перевозок считается расстояние в 200-300 км.

Если на ремонтное предприятие поступает агрегат с непросроченным гарантийным сроком, его подвергают дополнительным испытаниям с помощью омметра (определяют сопротивление обмоток статора, межфазное сопротивление, сопротивление по отношению к кожуху компрессора, обрыв внутренних соединительных проводов — пробой проходных контактов), а при необходимости проверяют и механическую часть. Если срок гарантии агрегата просрочен, то при поточном методе ремонта на предприятии происходит обезличивание как самих холодильных агрегатов, так и отдельных их узлов. Это упрощает первичную и отчетную цеховую документацию и позволяет применить единые ремонтные цены для определенного вида агрегатов.

Некоторые особенности имеет организация ремонта бытовых холодильных шкафов. Отечественная промышленность выпускает напольные и настенные холодильники различной вместимости, одно- и двухкамерные, на две температуры охлаждения (более 20 моделей с эксплуатационным сроком службы в 15 лет). Практически срок службы отечественных холодильников значительно выше. В настоящее время все еще работают (т. е. более 30 лет) холодильники ЗИЛ первых выпусков. Компрессорные агрегаты в холодильниках унифицированы, тем не менее в системе обслуживания и ремонта мастеру приходится сталкиваться с большим сроком службы деталей и узлов, со всем многообразием марок и моделей, включая снятые с производства и зарубежные холодильники.

Установлено, что если взять за критерий экономической целесообразности величину расходов на ремонт, то для отечественных холодильников целесообразным сроком эксплуатации без учета влияния фактора морального старения будет являться срок в 16-17 лет.

Во всех крупных центрах районов страны заводы-изготовители имеют свои собственные мастерские гарантийного ремонта. Благодаря таким мастерским завод-изготовитель может обеспечить систему гарантийного ремонта, получать систематизированную и достоверную информацию от потребителя об эксплуатации холодильников, специализировать ремонтные операции, достигнув более высокой производительности труда, чем в мастерских с универсальным оборудованием, и, наконец, может проводить определенную техническую политику, в частности в области повышения надежности холодильников. Система гарантийного и послегарантийного ремонта в мастерских завода-изготовителя является наиболее прогрессивной, производительной и перспективной формой организации ремонтных работ, широко распространенной и за рубежом.

Однако основная масса ремонтных работ проводится специализированными или универсальными мастерскими (ателье ремонта электробытовых приборов), входящими в единую систему бытового обслуживания населения и находящимися в ведении республиканских министерств местной промышленности. Мастерские или отдельные специалисты специализируются по ремонту холодильников определенного вида или модели. При поступлении заявки на ремонт проводят регистрацию как в книге учета заявок, так и в специальной карточке, оформляемой на каждого потребителя при его первичном обращении в мастерскую. Сведения о проведенном ремонте записывают в эти учетные карточки. Карточки поступают в картотеку раздельно по маркам холодильников и алфавитному порядку фамилий владельцев. Картотека позволяет оценить качество как изготовления, так и ремонта и устранить неисправности при повторных заявках на ремонт.

При гарантийном ремонте вышедшие из строя съемные узлы или детали заменяют новыми. Прогрессивной формой является также абонентное обслуживание, когда мастерская по договору с владельцем выполняет периодический надзор, обслуживание и ремонт и несет ответственность за работоспособность и экономичность холодильника.

Навигация:
Главная → Все категории → Монтаж холодильных установок

Холодильные машины и установки. Устройство, виды, принцип действия холодильных машин.

1. Общие сведения о холодильных машинах

Холодильные машины и установки предназначены для искусственного снижения и поддержания пониженной температуры ниже температуры окружающей среды от 10 °С и до -153 °С в заданном охлаждаемом объекте. Машины и установки для создания более низких температур называются криогенными. Отвод и перенос теплоты осуществляется за счет потребляемой при этом энергии. Холодильная установка выполняется по проекту в зависимости от проектного задания, определяющего охлаждаемый объект, необходимого интервала температур охлаждения, источников энергии и видов охлаждающей среды (жидкая или газообразная).

Читайте также:  4216 двигатель газ не заводиться

Холодильная установка может состоять из одной или нескольких холодильных машин, укомплектованных вспомогательным оборудованием: системой энерго- и водоснабжения, контрольно-измерительными приборами, приборами регулирования и управления, а также системой теплообмена с охлаждаемым объектом. Холодильная установка может быть установлена в помещении, на открытом воздухе, на транспорте и в разных устройствах, в которых надо поддерживать заданную пониженную температуру и удалять излишнюю влагу воздуха.

Система теплообмена с охлаждаемым объектом может быть с непосредственным охлаждением холодильным агентом, по замкнутой системе, по разомкнутой, как при охлаждении сухим льдом, или воздухом в воздушной холодильной машине. Замкнутая система может также быть с промежуточным хладагентом, который переносит холод от холодильной установки к охлаждаемому объекту.

Началом развития холодильного машиностроения в широких размерах можно считать создание Карлом Линде в 1874 году первой аммиачной паро-компрессорной холодильной машины. С тех пор появилось много разновидностей холодильных машин, которые можно сгруппировать по принципу работы следующим образом: паро-компрессионнные, упрощенно называемые компрессорные, обычно с электроприводом; теплоиспользующие холодильные машины: абсорбционные холодильные машины и пароэжекторные; воздушно-расширительные, которые при температуре ниже -90 °С экономичнее компрессорных, и термоэлектрические, которые встраиваются в приборы.

Каждая разновидность холодильных установок и машин имеет свои особенности, по которым выбирается их область применения. В настоящее время холодильные машины и установки применяются во многих областях народного хозяйства и в быту.

2. Термодинамические циклы холодильных установок

Перенос теплоты от менее нагретого к более нагретому источнику становится возможным в случае организации какого-либо компенсирующего процесса. В связи с этим циклы холодильных установок всегда реализуются в результате затрат энергии.

Чтобы отводимая от «холодного» источника теплота могла быть отдана «горячему» источнику (обычно — окружающему воздуху), необходимо поднять температуру рабочего тела выше температуры окружающей среды. Это достигается быстрым (адиабатным) сжатием рабочего тела с затратой работы или подводом к нему теплоты извне.

В обратных циклах количество отводимой от рабочего тела теплоты всегда больше количества подводимой теплоты, а суммарная работа сжатия больше суммарной работы расширения. Благодаря этому установки, работающие по подобным циклам, являются потребителями энергии. Такие идеальные термодинамические циклы холодильных установок уже рассмотрены выше в пункте 10 темы 3. Холодильные установки различаются применяемым рабочим телом и принципом действия. Передача теплоты от «холодного» источника «горячему» может осуществляться за счет затраты работы или же затрат теплоты.

2.1. Воздушные холодильные установки

В воздушных холодильных установках в качестве рабочего тела используется воздух, а передача теплоты от «холодного» источника «горячему» осуществляется за счет затраты механической энергии. Необходимое для охлаждения холодильной камеры понижение температуры воздуха достигается в этих установках в результате быстрого его расширения, при котором время на теплообмен ограничено, и работа в основном совершается за счет внутренней энергии, в связи, с чем температура рабочего тела падает. Схема воздушной холодильной установки показана на рис 7.14

Рис. 14. Схема воздушной холодильной установки: ХК — холодильная камера; К — компрессор; ТО — теплообменник; Д — расширительный цилиндр (детандер)

Температура воздуха, поступающего из холодильной камеры ХК в цилиндр компрессора К, поднимается в результате адиабатного сжатия (процесс 1 — 2) выше температуры Т3 окружающей среды. При протекании воздуха по трубкам теплообменника ТО его температура при неизменном давлении понижается — теоретически до температуры окружающей среды Тз. При этом воздух отдает в окружающую среду теплоту q (Дж/кг). В результате удельный объем воздуха достигает минимального значения v3, и воздух перетекает в цилиндр расширительного цилиндра — детандера Д. В детандере, вследствие адиабатного расширения (процесс 3-4) с совершением полезной работы, эквивалентной затемненной площади 3-5-6-4-3, температура воздуха опускается ниже температуры охлаждаемых в холодильной камере предметов. Охлажденный подобным образом воздух поступает в холодильную камеру. В результате теплообмена с охлаждаемыми предметами температура воздуха при постоянном давлении (изобара 4-1) повышается до своего исходного значения (точка 1). При этом от охлаждаемых предметов к воздуху подводится теплота q2 (Дж/кг). Величина q 2, называемая хладопроизводительностью, представляет собой количество теплоты, получаемой 1 кг рабочего тела от охлаждаемых предметов.

2.2. Парокомпрессорные холодильные установки

В парокомпрессорных холодильных установках (ПКХУ) в качестве рабочего тела применяют легкокипящие жидкости (табл. 1), что позволяет реализовать процессы подвода и отвода теплоты по изотермам. Для этого используются процессы кипения и конденсации рабочего тела (хладагента) при постоянных значениях давлений.

Физические параметры хладагентов

Температура кипения tкип при давлении р = 0,1 МПа, °С

Критическая температура, °С

Температура замерзания, tзам, °С

Скрытая теплота парообразования при tкип, кДж/кг

Холодильные машины

Холодильные машины предназначены для отвода тепла в целях поддержания на объекте температуры ниже, чем в окружающей среде. Подобное оборудование способно работать в очень широком диапазоне температур – +10…-80 градусов. В основе работы этих установок лежит принцип теплового насоса – они забирают тепло от объекта, затрачивая на охлаждение некоторую энергию.

Парокомпрессионные холодильные установки, оснащенные испарителем, конденсатором и компрессором, сегодня используются наиболее широко. Благодаря высокой герметичности они обладают достаточно высокой производительностью и низкими потерями потребляемой энергии.

Особенностью пароэжекторных холодильных машин является использование в качестве хладагента воды. Агрегат способен создавать пониженное давление, в результате чего жидкость в испарителе охлаждается. Пар из испарителя поступает в конденсатор, где превращается в жидкость, отдавая окружающей среде свое тепло. В охлаждаемую воду добавляется жидкость из конденсатора, которая подается в испаритель.

Производство

Особенности холодильных машин

Холодильные машины различных типов, отличающиеся устройством и принципом действия, имеют свои характерные особенности, благодаря которым они могут удовлетворять тем или иным требованиям, потребителей искусственного холода.

Прежде всего он исходит из того, какой температурный уровень должна создать и поддерживать холодильная установка и сколько теплоты необходимо отвести от охлаждаемого объекта. Эти критерии несколько ограничивают возможность выбора. Например, если требуется температура порядка —50 С, то одноступенчатые агрегаты ее не могут создать и их придется исключить из рассмотрения. Если от охлаждаемого объекта надо отводить очень много теплоты, то, скорее всего, выбор придется остановить на установке с винтовым или центробежным компрессором, который в данном случае имеют преимущества перед поршневым компрессором.

Следующий критерий выбора — затраты на приобретение, установку и эксплуатацию. Они складываются из капитальных затрат и эксплуатационных расходов.

Капитальные, т.е единовременные, затраты складываются из стоимости самой машины, стоимости помещения (или его части), где она будет стоять, фундамента (если он необходим), затрат на перевозку, монтаж, различные вспомогательные приспособления и материалы.

Эксплуатационные, т.е текущие, расходы включают прежде всего плату за энергию (любая установка для своей работы непременно требует подвода энергии) и охлаждающую воду (последние затраты исключаются при воздушном охлаждении, как, например, в домашнем холодильнике).

Плата за энергию связана с одной из важнейших характеристик холодильной машины — холодильным коэффициентом, показывающим, сколько джоулей теплоты можно отвести от охлаждаемого объекта, затратив один джоуль энергии. По этому коэффициенту судят об энергетической эффективности. Чем больше коэффициент, тем выше энергетическая эффективность. Поэтому при прочих равных условиях предпочтение отдают холодильному агрегату с наибольшим холодильным коэффициентом.

В эксплуатационные расходы входят еще затраты на содержание обслуживающего персонала и некоторые другие. Важными критериями выбора являются также ее надежность, определяемая показателями безотказности, долговечности и ремонтопригодности, степень автоматизации, уровень вибпааии и шума и ряд других, в числе которых — внешний вид (дизайн).

Насколько холодильная машина удовлетворяет требованиям потребителя, оценивают по указываемым в каталогах, рекламных проспектах и различных технических документах ее показателям, таким как холодопроизводительность, потребляемая мощность, расход охлаждающей воды, степень автоматизации, наработка на отказ, ресурс работы, масса, габаритные размеры, цена, вид поставки (единым агрегатом, отдельными блоками или «россыпью») и др.

Некоторым типам, которые соответствуют большинству требований потребителей, отдается предпочтение, другие используются довольно редко. Распространенность того или иного типа установки зависит не только от показателей, интересующих потребителей, но и от показателей, важных для изготовителей. К таким показателям относятся удельная трудоемкость изготовления, технологичность, степень унификации и стандартизации и др.

Виды пароэжекторных холодильных машин

Пароэжекторные холодильные машины обладают примерно теми же достоинствами, что и абсорбционные. Недостатки: большой шум при работе эжектора, еще более низкая, чем у абсорбционных машин, энергетическая эффективность, возможность охлаждать объект лишь до нескольких градусов выше нуля из-за использования воды в качестве хладагента. Вследствие этих недостатков имеют довольно ограниченную область применения. Их используют там, где важна простота эксплуатации и надежность, а повышенными энергетическими потерями можно пренебречь.

Обязательным условием для работы пароэжекторных установок является наличие значительного количества водяного пара давлением 0,7…1,0 МПа. Если для его получения сооружать специально паровой котел,то пропадет преимущество простоты и дешевизны паро-эжекторной машины. Поэтому их эксплуатируют, как правило, только там,где уже имеется источник водяного пара нужных параметров, причем в избытке, чтобы его хватало и для основного объекта. Такие условия имеются, например, на судах с крупными паротурбинными установками. В основном же пароэжекторные машины распространены на больших строительных объектах, где есть собственная котельная и имеется нужда в холоде.

Воздушные вихревые охлаждающие устройства чрезвычайно просты по конструкции. Они могут работать там, где есть источник сжатого воздуха — пневмома-гистраль, компрессорная станция — и где нужно простыми средствами получить относительно небольшое количество холода, примерно до 3 кВт. Вихревые охлаждающие устройства высоконадежны, безопасны в работе, но характеризуются высоким уровнем энергетических потерь, что сдерживает их широкое распространение.

Термоэлектрические охлаждающие устройства также высоконадежны, безопасны (при надлежащем качестве выполнения электрической части), просты в эксплуатации, малошумны (отсутствуют движущиеся части, кроме вентиляторов). Их характерная особенность — возможность очень просто переходить от режима охлаждения к режиму нагрева. Несмотря на указанные достоинства, из-за двух факторов — высокой стоимости полупроводниковых термоэлектрических батарей и сравнительно низкой энергетической эффективности — термоэлектрические охлаждающие устройства имеют весьма ограниченное применение.

Виды абсорбционных холодильных машин

Второй распространенный тип холодильных машин — абсорбционные. Их основная особенность состоит в том, что они потребляют не механическую, а тепловую энергию. Отсюда вытекают их достоинства и недостатки.

Абсорбционные машины просты по конструкции (кроме насосов для перекачки жидкости, в них нет других движущихся механизмов), дешевы в изготовлении, надежны, малошумны. Их можно размещать вне помещений: на открытых площадках под легкими навесами для защиты от осадков. Главный недостаток — невысокая энергетическая эффективность. Для выработки одинакового количества холода абсорбционным холодильным машинам требуется больше энергии, чем парокомпрессионным.

Это хорошо видно на примере домашних холодильников — абсорбционный «накручивает» за месяц на электросчетчике заметно больше киловатт-часов, чем компрессионный. Но это внешняя сторона. Сущность же заключается в том, что в агрегате домашнего холодильника абсорбционного типа, питающегося от электросети, потребляемая электрическая энергия превращается в тепловую энергию, которая затем обеспечивает выработку холода.

В крупных промышленных установках использовать электроэнергию необязательно. Тепловую энергию для обогрева генератора пара можно получать, сжигая газ или мазут, применяя горячий водяной пар и даже нагретую не до кипения воду. Затраты на производство тепловой энергии в этом случае меньше, чем при использовании электроэнергии, и может оказаться, что в целом (при благоприятном стечении различных обстоятельств) эксплуатация абсорбционной холодильной машины обойдется не дороже, чем эксплуатация парокомпрессионной. Если же на объекте имеются избыточные тепловые ресурсы в виде пара или горячей жидкости (тепло которых иногда даже «сбрасывают» в окружающую среду), то абсорбционные машины становятся выгоднее парокомпрессионных. Именно в таких случаях главным образом и используют абсорбционные машины.

На практике применяют две разновидности абсорбционных машин — водоаммиачные и бромистолитиевые. Они работают на двух-компонентном рабочем веществе.

В водоаммиачных машинах хладагентом служит аммиак, а абсорбентом — вода, в бромистолитиевых машинах — соответственно вода и бромистый литий. В бромистолитиевых машинах в испарителе кипит вода, поэтому с помощью этих машин можно получать температуры не ниже О °С, в противном случае вода замерзает.

Парокомпрессионные холодильные машины

Наибольшее распространение в области умеренного холода получили парокомпрессионные холодильные машины. Именно они составляют наибольшую (можно сказать подавляющую) часть парка всех работающих в мире установок. У них по сравнению с машинами других типов более высокий (при прочих равных условиях) холодильный коэффициент и наименьший расход энергии при эксплуатации.

В их составе применяются компрессоры различных типов (их конструкции будут рассмотрены в следующих статьях). Поршневые компрессоры имеют высокий коэффициент, однако для них характерна большая, чем для компрессоров других типов, вибрация и они менее надежны из-за наличия клапанов, которые гораздо чаще других детален выходят из строя. Поршневые очень хороши в машинах малой и средней холодопроизводительности и чересчур громоздки, тяжелы и менее энергетически эффективны в машинах большой холодопроиэводительности.

В последнее время начали широко использовать винтовые, которые в области малых холодопроизводительностей пока не могут конкурировать с поршневыми по энергетической эффективности, но почти сравниваются с ними по этому показателю в области средних холодопроизводительностей. Главное достоинство винтовых компрессоров — высокая надежность. Это, а также компактность и незначительная вибрация обусловили широкое применение винтовых компрессоров вначале в судовых холодильных установках, а затем в установках разных отраслей народного хозяйства. К недостаткам следует отнести повышенный уровень шума и громоздкость масляной системы.

Винтовой компрессор работает энергетически эффективно в случае, если его внутренняя степень сжатия, неизменная из-за заданной геометрии рабочих органов, совпадает с отношением давлений конденсации и кипения в холодильном цикле. Это отношение определяется внешними условиями и часто не равно внутренней степени сжатия. При их несовпадении ухудшаются энергетические показатели агрегата.

Недавно появились конструкции винтовых компрессоров с изменяющейся внутренней степенью сжатия, а значит, и с возможностью автоматически подстраиваться под меняющиеся внешние условия с целью добиться наилучшей энергетической эффективности. По мере совершенствования они постепенно будут заменить как поршневые,так и до известного предела компрессоры центробежного типа.

Центробежные компрессоры, обслуживающие парокомпрессионные машины особенно большой холодопроизводительности, не имеют конкурентов в своей области применения. Они компактны, хорошо уравновешенны, достаточно надежны. У них довольно просто и эффективно регулируется холодопроизводительность. Однако весьма трудно добиться удовлетворительных показателей у центробежных компрессоров при не очень большой холодопроизводителыюсти (менее

Читайте также:  Автомобиль камаз руководство по технической эксплуатации
Оцените статью