Общие принципы устройства электрических машин

Общие принципы устройства электрических машин

§1.3. УСТРОЙСТВО ЭЛЕКТРИЧЕСКИХ МАШИН

Основные элементы конструкции. Вращающиеся электрические машины независимо от их исполнения имеют некоторые однотипные элементы конструкции. Каждая вращающаяся машина имеет две основные части: вращающийся ротор 1 и неподвижный статор 2 (рис. 1.1). В большинстве случаев ротор располагается внутри статора. Между ними всегда имеется воздушный зазор 3. Ротор крепится на валу 4,

Рис. 1.1. Конструктивная схема электрической машины:

1 — ротор; 2 — статор; 3 — воздушный зазор; 4 — вал; 5 — подшипники; 6 — подшипниковые щиты; 7 — корпус

Рис. 1.2. Асинхронный двигатель в защищенном исполнении:

1 — лапы для крепления машины; 2 — вентиляционное окно для входа охлаждающего воздуха; 3 — подшипник; 4 — вал; 5 — подшипниковые щиты; 6 — корпус; 7— вентиляционное окно для выхода воздуха

который опирается на подшипники 5. Один конец вала удлинен для сопряжения с другими рабочими механизмами. Подшипники обычно располагаются в подшипниковых щитах 6, прикрепленных болтами к корпусу (станине) 7. Статор также крепится к корпусу.

На рис. 1.2 и 1.3. дан общий вид асинхронных двигателей, а на рис. 1.4 представлен двигатель в разобранном виде.

Часть машины, где размещается рабочая обмотка, в которой индуктируется э. д. с, называется якорем. Якорем может быть ротор или статор.

Системы охлаждения. Электрические машины выполняются с естественным и искусственным охлаждением. В ка-

честве охлаждающей среды используется воздух, в некоторых случаях масло, водород или вода.

Естественное охлаждение происходит за счет теплопроводности, конвекции и лучеиспускания. Движение охлаждающей среды может создаваться в результате вращения частей машины, в которой не

Рис. 1.3. Асинхронный двигатель в закрытом исполнении: 1 — лапы для крепления машины; 2 — подшипниковый щит; 3 — подшипник; 4 — вал; 5 — корпус; 5 —кожух. Стрелки А и В показывают направление движения воздуха

Рис. 1.4. Асинхронный двигатель защищенного исполнения в разобранном виде: 1 — ротор; 2 — статрр; 3 — лапы для крепления; 4 — вал; 5 — подшипники; 6 — подшипниковые щиты; 7 — корпус; 8 — вентиляционные лопатки

имеется специальных вентиляционных приспособлений. Микромашины обычно имеют естественное охлаждение.

Вращающиеся электрические машины мощностью более 0,6 квт обычно выполняются с искусственным охлаждением, которое осуществляется при помощи специальных вентиляционных устройств. Применение вентиляции позволяет существенно повысить мощность и является экономически целесообразным. Машины с искусственным охлаждением имеют меньшие габариты, вес и расход активных материалов.

Электрические машины малых и средних мощностей обычно выполняются с самовентиляцией. В этом случае напор охлаждающегося воздуха создается вентилятором, который укрепляется на валу, или вентиляционными лопатками и приспособлениями (см. 8 на рис. 1.4), укрепленными на торцовой поверхности ротора.

В машинах охлаждающий воздух может прогоняться в направлении оси вала (рис. 1.5, а). Такая система вентиляции называется осевой. Осевая вентиляция может быть вытяжной или нагнетательной. В первом случае вентилятор помещается на «выходе», во втором — на «входе» воздуха. Охлаждающий воздух может прогоняться и в радиальном направлении (рис. 1.5, б), проходя по радиальным каналам между пакетами стали и обдувая лобовые части обмоток, Такая система вентиляции называется радиальной.

Во многих случаях применяется комбинированная радиально-осевая система вентиляции.

Виды исполнения. У электрических микромашин объем активных частей, в которых выделяется тепло, небольшой по отношению к поверхности охлаждения. Поэтому потери, приходящиеся на еди-

Рис. 1.5. Система вентиляции: а — осевая; б — радиальная

ницу поверхности охлаждения, небольшие, и микромашины сравнительно хорошо охлаждаются естественным путем. К тому же в микромашинах не остается места для размещения вентилятора, поэтому они (микромашины) обычно выполняются закрытыми и имеют внешнее естественное охлаждение.

Основным исполнением электрических машин мощностью свыше 0,6 квт является защищенное и закрытое обдуваемое. Машины в защищенном исполнении предохранены от случайного прикосновения к вращающимся и токоведу-щим частям, а также от попадания внутрь посторонних предметов. Машина, имеющая приспособления, защищающие от попадания в нее капель, падающих под углом к вертикали, называется брызгозащищенной. Доступ к вращающимся и токоведущим частям защищенной машины затруднен (рис. 1.2 и 1.6), так как вентиляционные окна, предназначенные для входа и выхода охлаждающего воздуха, расположены снизу таким образом, что брызги не могут попадать внутрь машины.

Читайте также:  Заводы по сборке автомобилей ниссан

В машинах закрытого исполнения отсутствует интенсивное сообщение между ее внутренним пространством и окружающей средой. Для лучшего охлаждения нагретых частей внутри машины создается циркуляция воздуха, которая в некоторых случаях осуществляется внутренним вентилятором. Для лучшего охлаждения корпус

Рис. 1.6; Защищенный асинхронный двигатель с вертикальным расположением вала и фланцевым исполнением:

1 — окно, предназначенное для входа охлаждающего воздуха; 2 — окно, предназначенное для выхода охлаждающего воздуха; 3 — фланец

такой машины часто выполняется ребристым и обдувается внешним вентилятором, который прогоняет воздух, засасываемый из внешней среды, между корпусом и направляющим кожухом (рис. 1.3). В торцовой части кожуха имеются отверстия. Направление, в котором воздух засасывается в отверстие, показано стрелкой А. Стрелка В показывает направление движения воздуха, охлаждающего корпус (см. рис. 1.3).

Закрытые машины могут быть герметическими, имеющими газонепроницаемое, водонепроницаемое и взрывобезопасное исполнения. Мощность закрытых невентилируемых двигателей средних и больших мощностей при одинаковом нагреве обмоток должна быть уменьшена почти в два раза по сравнению с обдуваемыми машинами.

Электрические машины обычно выполняются для работы при горизонтальном или вертикальном положении вала. Крепление машины, как правило, осуществляется при помощи лап, расположенных на ее корпусе (см. рис. 1.2, 1.3 и 1.4). Некоторые машины вместо лап имеют для крепления на подшипниковом щите фланец (см. рис. 1.6).

Шумы электрических машин. Работа электрических машин сопровождается шумом, источником которого являются периодические колебания и упругие деформации отдельных частей машины. Шум может быть вызван механическими причинами, связанными с неточностью балансировки ротора, периодическим колебанием щеток вследствие неровной поверхности коллектора, трением щеток о коллектор и трением в подшипниках (особенно в шарикоподшипниках).

При работе машины может появиться так называемый магнитный шум, вызванный периодическими деформациями участков маг-нитопровода, которые могут возникнуть в результате изменения магнитной проводимости воздушного зазора при вращении зубчатого якоря, а при работе на переменном токе также вследствие периодического перемагничивания магнитной системы. Источниками шума могут явиться и вихреобразования потока воздуха, охлаждающего машину.

Условно можно считать машины бесшумными, если акустический уровень шума Г

Устройство, части электрических машин

Электрическими машинами называют устройства, которые предназначены для преобразования одного вида энергии в другой.

Большинство современных машин могут превращать механическую силу в электроэнергию и наоборот. Первый тип устройств называется генераторами, а второй – двигателями.

Электрические машины используются практически во всех отраслях промышленности и быта. Дизельный генератор, двигатель тепловоза или мотор бытового вентилятора – это все примеры электрических машин.

Принцип действия устройств основан на законах электромагнитного поля и его взаимодействии с током.

Существует три вида электрических машин:

  • постоянного тока. Их используют в качестве тяговых двигателей для локомотивов и другого электротранспорта;
  • синхронные переменного тока. Основное применение в качестве генераторов;
  • асинхронные переменного тока. Этот тип устройств используют в качестве двигателей для ручного инструмента, станков и бытовой техники.

Устройство электрических машин указанных групп различно, что обусловлено типом их конструкций и процессами, проходящими внутри них. Чтобы разобраться в основах, стоит рассмотреть один вид подробно.

Как устроены машины постоянного тока

Конструкция электрической машины постоянного тока состоит из таких элементов:

  • основа (станина). Этот элемент отливают из стали, он является основой устройства, поддерживает подшипниковую систему, катушки и якорь и полюса. Остов имеет цилиндрическую форму и дополнительные отливы для стационарного крепления на раму;
  • якорь. Одна из составляющих частей машины, которая состоит из обмоток, вала, сердечника и коллектора. Сердечник изготавливается из листовой электротехнической стали. Элементы якоря имеют форму с зазубринами, которые в сборе образуют каналы для укладки намотки. Для обмотки основным материалом является медь – для машин малой и средней мощности используют проволоку, а для мощных устройств медные стержни;
  • щетки электрических машин. Они нужны для соединения внешней цепи и коллектора. Различают четыре типа щеток – металлографитные, угольно-графитные, графитные и электрографитные. Их изготавливают из разных материалов, а каждый вид обладает своими характеристиками. Щетки — это изнашиваемая деталь, требующая регулярной замены. Новая деталь должна полностью соответствовать типу и марке отработанной щетки, чтобы избежать поломки электрической машины;
  • изоляция электрических машин. Различают три разновидности изоляции – витковая (изолируется каждый проводник в катушке), корпусная (катушка целиком изолируется от якоря) и наружная (корпус покрывают специальным составом для защиты от механических повреждений, которые могут вызвать пробой.
Читайте также:  Как заменить двигатель иномарки

Некоторые части электрических машин отличаются по форме, материалу изготовления и функциональности. Это зависит от назначения, типа устройства и эксплуатационных характеристик.

Больше об устройстве современных электрических машин можно узнать на ежегодной выставке «Электро».

Принцип работы электрических машин

Классификация электрических машин

Классифицируют электрические машины по назначению, принципу действия и роду тока, мощности, по частоте вращения.

Классификация по назначению

Электрические машины по своему назначению подразделяют на:

  • Электромашинные генераторы. Они выполняют преобразовании энергии механической (вращение) в электрическую. Они устанавливаются на электрических станциях, автомобилях, самолетах, тепловозах, передвижных электростанциях, кораблях и в других установках. На электростанциях генератор приводят в движение мощные паровые турбины, на автомобилях, тепловозах и прочих транспортных средствах – газовые турбины или двигатели внутреннего сгорания. Генераторы очень часто используют в качестве источников питания в различных установках связи, автоматики и измерительной техники и в других системах.
  • Электрические двигатели – выполняют функции обратные генератору, а именно, преобразуют электрическую энергию в механическую. Они используются для приведения в движение множества установок в промышленности, сельском хозяйстве, транспорте, в быту, в системах связи. В системах автоматического регулирования их активно используют в качестве регулирующих, программирующих и исполнительных органов.
  • Электромашинные преобразователи – выполняют преобразования электрических величин. Например, могут преобразовывать постоянный ток в переменный и наоборот, изменять частоту, число фаз и другие функции. В связи с активным внедрением полупроводниковых преобразователей электромашинные преобразователи в новых проектах используют крайне редко (практически никогда), а уже установленные электромашинные преобразователи активно модернизируются полупроводниковыми (тиристорными и транзисторными).
  • Электромашинные компенсаторы – осуществляют регулирование коэффициента мощности cos φ, а именно баланса реактивной мощности в сети.
  • Электромашинные усилители – используют для объектов большой мощности. Это, своего рода усилители, они усиливают сигналы большой мощности, при этом управление ведется сигналами малой мощности. Роль этих усилителей, как и электромашинных компенсаторов, в современном мире практически сведена на нет из – за применения полупроводниковых усилителей (транзисторных и тиристорных).
  • Электромеханические преобразователи сигналов – это, как правило, электрические микромашины (например, сельсины), которые довольно широко используют в системах автоматического управления.

Классификация по роду тока и принципу действия

Как известно, существует два рода электрического тока – переменный и постоянный.

Исходя из этого, электрические машины также подразделяют по роду тока на два вида – машины электрические переменного тока и машины электрические постоянного тока.

Электрические машины переменного тока

  • Трансформаторы – наиболее широко применимы в сетях электроснабжения для преобразования напряжений (повышение и понижение). Также довольно широко их применяют в выпрямительных установках для согласования напряжений, в устройствах связи, вычислительной техники и автоматики. Часто применяются и для проведения измерений электрических (измерительные трансформаторы), а также для различных функциональных преобразований (трансформаторы вращающиеся).
  • Асинхронные электродвигатели – самые распространенные в мире благодаря своей относительной простоте и низкой стоимости. Применяются в промышленных электроустановках (станки, краны, подъемные машины) и в бытовых (компрессора холодильников, вентиляторы, пылесосы). Довольно широкое применение получили однофазные и двухфазные асинхронные управляемые электродвигатели, а также сельсины и тахогенераторы асинхронные.
  • Синхронные электродвигатели – наиболее часто применяемы в качестве генераторов электрического тока на электрических станциях. Также применимы в качестве генераторов повышенной частоты в различных источниках питания (например, на кораблях, тепловозах, самолетах). Также в электроприводах большой мощности применяют синхронные электродвигатели, которые могут также помимо выполнения полезной работы и также влиять на коэффициент мощности сети cos φ.
  • Коллекторные машины – используют их только в качестве электродвигателей. Это вызвано сложностью их конструкции и необходимостью тщательного ухода. В бытовых электроприборах и устройствах автоматики применяются универсальные коллекторные электродвигатели, способные работать на двух родах тока – постоянном и переменном.

Электрические машины постоянного тока

Они работают практически во всех сферах промышленности и транспорта.

В связи с большим распространением машин постоянного тока также были распространены и генераторы постоянного тока. Они использовались в качестве источников постоянного напряжения для зарядки аккумуляторных батарей, на транспорте (тепловозы, теплоходы и другие), а также в промышленности (система генератор — двигатель). Ввиду развития полупроводниковой техники генераторы постоянного тока постепенно вытесняются из работы и активно заменяются на генераторы переменного тока работающих в паре с полупроводниковым преобразователем.

Читайте также:  Автомобили газ некст модельный ряд

Также применяются электродвигатели постоянного тока и в системах автоматического управления АСУ в качестве усилителей электромашинных, тахогенераторов и исполнительных электродвигателей.

Электрические микромашины

Микромашины активно применяются в устройствах автоматических.

Их подразделяют на группы:

  • Силовые микродвигатели – приводят во вращения механизмы различных автоматических устройств. Например, самопишущие устройства и другие.
  • Исполнительные (управляемые) микромашины – выполняют преобразование энергии электрической в механическую, то есть ведут обработку определенных команд из вне.
  • Тахогенераторы – преобразуют механическую энергию вращения вала в электрический сигнал напряжения, который пропорционален скорости вращения вала.
  • Вращающиеся трансформаторы – на выходе этих трансформаторов устанавливается напряжение, пропорциональное функции углу поворота ротора, например синусу или косинусу данного угла или же самому углу.
  • Машины синхронной связи – (магнесины или сельсины) осуществляют синфазный и синхронный поворот или же вращения нескольких осей, не имеющих между собой механической связи.
  • Микромашины гироскопических приборов – вращают роторы гироскопов с довольно высокой частотой, а также производят коррекцию их положения.
  • Электромашинные усилители и преобразователи.

Классификация по мощности

  • Микромашины – их мощность может варьироваться от нескольких долей ватта до 500 Вт. Они могут производится для двух родов тока — постоянного и переменного. Могут быть рассчитаны как на работу при нормальной (промышленной) частоте 50 Гц, так и при повышенной ( от 400 до 2000 Гц).
  • Электродвигатели малой мощности – от 0,5 до 10 кВт. Также могут изготавливаться для двух родов тока – постоянного и переменного нормальной и повышенной частоты.
  • Электродвигатели средней мощности – от 10 кВт до нескольких сотен ватт.
  • Электродвигатели большой мощности – мощность данных машин больше нескольких сотен киловатт. Такие электродвигатели предназначены для работы на постоянном и переменном напряжении нормальной частоты. Исключение могут составлять электродвигатели специального назначения (авиация, флот) и другие.

Классификация по частоте вращения

  • До 300 об/мин — тихоходные.
  • От 300 до 1500 об/мин — средней быстроходности.
  • От 1500 до 6000 об/мин — быстроходные.
  • Более 6000 об/мин — сверхбыстроходные.

Микромашины же могут изготавливать с частотой вращения вала от нескольких оборотов в минуту до 60 000 оборотов в минуту. Скорость вращения машин средней и большой мощности, как правило, не превышает 3000 об/мин.

Устройство и принцип работы электромобиля. Плюсы и минусы электрокаров

Устройство электромобиля и принцип его работы

Принцип работы электромобиля заключается в следующем. В нем задействован механизм электромагнитной индукции, который состоит в том, что при наличии переменного электрического тока в проводнике возникает магнитное поле, которое по закону Ампера выполняет отклоняющее действие.

В моторе существуют два основных компонента: ротор и статор.

Статор остается постоянно неподвижным и по нему пропускается электрический ток определенной частоты.

Генерируемое в статоре магнитное поле действует на ротор и тот начинает вращаться. Получаемая механическая энергия используется для движения транспортного средства. Скорость движка прямо пропорциональна частоте тока и количеству установленных магнитных полюсов.

Ток для питания статора генерируется установленными на борту батареями. В зависимости от модели машины, батареи могут иметь разную емкость, конструкцию, особенности используемых механизмов работы.

Типы устройств электромобиля

Выделяют такие машины на электричестве:

  • Внутригородские. Имеют невысокую мощность и скорость передвижения, на них установлены специальные ограничения по максимальной мощности. Небольшого диаметра колеса и малый вес позволяют двигаться в нормальном городском режиме;
  • Микроэлектромобили. Созданы с учетом плотного городского транспортного потока, имеют батарею небольшой емкости. Используются для небольших переездов, поездок в магазин, на работу и назад и т.п.;
  • Различные креативные варианты, типа трициклы;
  • Обычные авто. Привычные легковушки, типа некоторых популярных моделей от Tesla;
  • Грузовые. Пока еще не слишком распространены, но в перспективе могут использоваться в крупных городах для внутренних перевозок и уменьшения выбросов в атмосферу;
  • Троллейбусы, трамваи, автобусы на электродвижках также являются довольно популярным видом транспорта в любом крупном городе.

Плюсы и минусы электрокаров

  • Минимальные расходы на заправку.
  • Простота сервисного обслуживания.
  • Тихая работа мотора.
  • Отсутствие опасных выхлопных газов.
  • Покупка на перспективу.
  • Небольшой выбор авто и высокая цена.
  • Ограниченное количество необходимых заправок.
  • Высокая цена на батареи.
  • Ограниченность использования электроники, например, кондиционера, который будет быстро поглощать имеющийся заряд АКБ.
Оцените статью