Точность обработки
Качество обработки деталей машин определяется двумя критериями: точностью обработки и шероховатостью обработанных поверхностей.
Под точностью обработки понимают степень соответствия изготовленной детали заданным размерам и форме. В большинстве случаев форма деталей определяется комбинацией известных геометрических тел: цилиндрических, конических, плоскостей и т. д. Можно установить следующие основные критерии соответствия детали заданным требованиям:
- точность формы, т. е. степень соответствия отдельных поверхностей детали тем геометрическим телам, с которыми они отождествляются;
- точность размеров поверхностей детали;
- точность взаимного расположения поверхностей
Отклонения формы и расположения поверхностей
Отклонение формы реальной поверхности от номинальной, т. е. заданной чертежом, оценивается наибольшим расстоянием D между точками реальной поверхности и номинальной, измеренным по нормали к последней. Отклонения формы и расположения поверхностей регламентируются ГОСТом. Наиболее часто встречающиеся из них:
Отклонения от плоскостности:
- Выпуклость — отклонение от прямолинейности, при котором удаление всех точек реального профиля от прилегающей прямой уменьшается от края к середине (рис. 1, а, в);
- Вогнутость — отклонение от прямолинейности, при котором удаление всех точек реального профиля от прилегающей прямой увеличивается от края к середине (рис. 1,б,г).
Отклонения от круглости:
- Овальность — отклонение от круглости при котором реальный профиль представляет собой овалообразную фигуру, наибольший и наименьший диаметры которой находятся во взаимно перпендикулярных направлениях (рис.1, д);
- Огранка — отклонение от круглости при котором реальный профиль представляет собой многогранную фигуру (рис.1,е).
Рисунок 1. Определение величины отклонения формы
Отклонения профиля продольного сечения — характеризуются непрямолинейностью и непараллельностью образующих:
- Конусообразность – отклонение профиля, при котором образующие прямолинейны, но не параллельны (рис. 2,а);
- Бочкообразность — отклонение профиля, при котором образующие непрямолинейны, а диаметры увеличиваются от краёв к середине сечения (рис. 2,б);
- Седлообразность — отклонение профиля, при котором образующие непрямолинейны, а диаметры уменьшаются от краёв к середине сечения (рис. 2,в).
Рисунок 2. Отклонения профиля продольного сечения
Рисунок 3. Отклонения расположения
Отклонения расположения характеризуется отклонением реального расположения поверхностей (осей) от их номинального расположения:
- Торцовое биение – разность D наибольшего и наименьшего расстояний от точек реальной торцовой поверхности, до плоскости, перпендикулярной базовой оси вращения (рис. 3,а);
- Радиальное биение – разность наибольшего и наименьшего расстояний от точек реальной поверхности до базовой оси вращения в сечении, перпендикулярном этой оси;
- Неперпендикулярность осей или оси и плоскости – расстояние D (Рис. 3,в) между осями или осью и плоскостью на заданной длине; Например: =0,025 мм на 100 мм длины.
- Непараллельность оси вращения и плоскости – разность А-В наибольшего и наименьшего расстояний между осью и прилегающей плоскостью на заданной длине (Рис. 3,г);
- Несоосность – наибольшее расстояние D (Рис. 3,е) между осью рассматриваемой поверхности и осью базовой поверхности на всей длине рассматриваемой поверхности или расстояние между этими осями в заданном сечении.
Факторы, определяющие точность обработки
Погрешность обработки — Отклонение параметров реальных поверхностей детали от заданных на чертеже ещё называется погрешностью. В результате несоответствия действительных движений заготовки и инструмента движениям, предусмотренным кинематической схемой станка, возникает погрешность обработки.
В состав погрешности обработки входят:
- погрешность работы станка, возникающая вследствие неточности кинематической схемы станка и его отдельных узлов;
- погрешность настройки, возникающая от неправильности взаимного расположения инструмента и заготовки, а также от неточности регулировки упоров и остановов.
Погрешность настройки складывается из:
- неточности настройки режущего инструмента;
- износа режущего инструмента;
- упругих деформаций технологической системы станок—приспособление—инструмент—деталь (СПИД);
- температурных деформаций узлов станка, обрабатываемой заготовки и режущего инструмента.
Рисунок 4.
Точность настройки станка и режущего инструмента
При смещении резца на размер а вверх-вниз относительно оси станка (рис. 4) диаметр D заготовки увеличивается.
Биение вращающихся центров станка приводит к биению обрабатываемых поверхностей заготовки относительно оси центральных отверстий. При перестановке обработанной заготовки на другой станок с другим биением центров может возникнуть отклонение от соосности у заготовок, обрабатываемых в разных условиях.
Жёсткость технологической системы
Жёсткостью технологической системы называют отношение радиальной силы резания Py, направленной перпендикулярно обрабатываемой поверхности, к смещению y режущей кромки инструмента относительно обрабатываемой поверхности заготовки в том же направлении:
Под влиянием силы резания возникает упругая деформация элементов технологической системы СПИД (изгиб и сжатие резца, изгиб заготовки и т.п.). Если бы под действием сил резания заготовка и инструмент не деформировались, то обработанная поверхность имела бы форму цилиндра диаметром d (рис.5).
Однако, в результате упругих деформаций резца и заготовки диаметр обработанной поверхности будет отличаться от заданного на величину погрешности — . Эта погрешность тем больше, чем больше величины сил
, чем больше вылет резца. В различных точках обрабатываемой поверхности жёсткость технологической системы различна. Например, при консольном закреплении в 3-х кулачковом патроне жёсткость детали будет уменьшаться по мере удаления от патрона. Следовательно, при обработке с продольной подачей стрелка прогиба детали от действия сил резания будет изменяться по длине обработанной поверхности, и мы получим погрешность формы детали — конус вместо цилиндра (см. рис. 6).
Деформации режущего инструмента, зависящие от величины его вылета из резцедержателя, особенно сказываются при растачивании глубоких отверстий (рис. 8).
Повышение жёсткости технологической системы — непременное условие применения высокопроизводительных режимов резания и повышения точности обработки.
Влияние на точность обработки температуры и других факторов
В процессе резания звенья технологической системы нагреваются, что приводит к возникновению температурных погрешностей. Так, вследствие нагрева инструмента удлиняется его режущая часть, что приводит к возникновению погрешности формы и размеров при обработке длинных поверхностей.
Выделение тепла при резании приводит к нагреву обрабатываемой заготовки, причём — чем длиннее заготовка, тем неравномернее она нагревается. Следовательно, изменяется её форма и размеры, что вносит дополнительную погрешность обработки.
Температура нагрева обрабатываемой заготовки зависит от количества теплоты, поступающей в заготовку, которая в свою очередь зависит от массы заготовки, теплоёмкости её материала, режима резания. Чем больше масса заготовки, тем меньше она подвержена температурным деформациям.
При работе станка выделяется теплота из-за трения в узлах и подшипниках, вследствие чего нагреваются детали станка и его механизмы. У токарно-винторезного станка главным образом нагревается передняя бабка. Задняя бабка, суппорт и станина нагреваются незначительно. Ввиду больших масс частей станка происходят медленные температурные деформации, которые незначительно влияют на точность обработки.
Большое влияние на точность обработки оказывает размерный износ режущего инструмента в направлении нормали к обрабатываемой поверхности. Величина износа зависит от пути, пройденного резцом за период его стойкости, т.е. пути резания:
[м], где
скорость резания, м/мин.
Характеристикой интенсивности размерного износа является относительный износ (мкм), т.е. размерный износ приходящийся на 1000 м пути резания:
Рисунок 9.
Рисунок 10.
Относительный износ имеет сложную зависимость от скорости резания (см. рис. 9). В зоне низких скоростей (50 м/мин) он довольно велик; при возрастании скорости резания он уменьшается, достигая минимума при оптимальном значении . Дальнейшее возрастание скорости резания приводит к увеличению относительного износа.
Зависимость скорости изнашивания от времени работы инструмента имеет следующий вид (см. рис. 10). В начале работы резец изнашивается значительно интенсивнее. Начальный износ можно учесть, прибавляя к пути резания длину .
Тогда размерный износ может быть определён по формуле:
МЕТОДЫ ОБЕСПЕЧЕНИЯ ТОЧНОСТИ ОБРАБОТКИ ДЕТАЛЕЙ
КАЧЕСТВО ИЗДЕЛИЙ
Под качеством продукции понимают совокупность её свойств, определяющих пригодность продукции удовлетворять определённым потребностям в соответствии с её назначением. Продукция может быть художественного и технического назначения.
При изготовлении изделий необходимо обеспечить требуемые эстетические и технические характеристики изделий (цвет, линейные размеры, форму, шероховатость, блеск, удалить поверхностные дефекты), для контроля этих параметров требуются измерительные инструменты.
Важнейшим показателем качества изделия является его точность.
Под точностью детали понимают степень её приближения к геометрически правильному её прототипу. Изготовить деталь абсолютно точно невозможно. Поэтому за меру точности принимают величины отклонений от теоретических значений.
При изготовлении деталей невозможно достичь абсолютно точных номинальных размеров. Поэтому при составлении рабочих чертежей назначают допускаемые отклонения от начальных размеров, которые отвечают точности их изготовления.
Точность детали характеризуют следующими параметрами:
а) точностью размеров (это допускаемые отклонения действительных размеров от номинальных). Показатель точности (это квалитет), принято 16 квалитетов IТ01. IТ16);Согласно ГОСТ 24643-81, устанавливают 16 степеней точности (квалитетов), чем больше квалитет, тем больше допуск.
б) точностью формы (это допускаемые отклонения от геометрической формы, примерами является — овальность, огранка, некруглость, неплоскостность, нецилиндричность, непрямолинейность и т.д.);
Точность формы цилиндрических поверхностей определяется точностью контура в поперечном (перпендикулярном оси) сечении и точностью образующих цилиндра в продольном (проходящем через ось) сечении. Контур поперечного сечения цилиндрического тела описывается окружностью. Показателем отклонений контура поперечного сечения является некруглость — отклонение от окружности. При отсутствии огранки с нечетным числом граней некруглость определяется как полуразность между наибольшим и наименьшим диаметрами сечения, измеренными двухконтактным прибором.
Отклонение формы цилиндрической поверхности в плоскости, перпендикулярной оси
анекруглость б — овальность в — огранка
К дифференцированным отклонениям формы в поперечном сечении относятся овальность и огранка.
Овальность(рис. 44, б) — отклонение от окружности, при котором дей-ствительный профиль представляет собой овалообразную фигуру, наибольший и наименьший диаметры которой (вдоль большой и малой осей овала) находятся во взаимно перпендикулярных направлениях. За величину овальности принимается разность между наибольшим и наименьшим диаметрами сечения, т.е. удвоенная величина некруглости.
Огранка (рис. 44, в) — отклонение, при котором профиль детали представляет собой многогранную фигуру с криволинейными гранями. Величина огранки определяется как наибольшее расстояние от точек действительного профиля до прилегающей окружности.
Отклонение профиля цилиндрической поверхности в продольном сечении определяется как наибольшее расстояние от точек действительного профиля до соответствующей стороны прилегающего профиля (рис. 45, а). Прилегающий профиль для этого случая образуется двумя параллельными прямыми.
Рис. 45. Комплексные показатели отклонений формы цилиндрических поверхностей
а — отклонения профиля продольного сечения б — нецилиндричность.
Отклонения от цилиндрической формы наиболее полно могут быть регламентированы комплексным показателем — цилиндричностью(отклонением от цилиндричности), включающим все виды отклонения формы поверхности от прямого круглого цилиндра, т.е. некруглость и отклонение профиля продольного сечения. Величина нецилиндричности определяется как наибольшее расстояние от точек действительной поверхности до прилегающего цилиндра (рис. 45, б).
Рис. 46. Отклонения формы цилиндрической поверхности в продольности сечения
а — бочкообразность б — седлообразность (конусность) в — вогнутость
г— конусность.
К дифференцированным отклонениям формы цилиндрических поверхностей в продольном сечении относятся бочкообразность (рис. 46, а) , седлообразность (рис. 46, б), изогнутость (рис. 46, в), конусность (рис. 46, г).
Бочкообразность, седлообразность (корсетность) и изогнутость являются следствием непрямолинейности образующих, конусность — следствием непараллельности образующих.
Совокупность всех отклонений профиля сечения плоских поверхностей может быть охарактеризована комплексным показателем — непрямолинейностью, а всех отклонений формы поверхности — неплоскостностью.
Непрямолинейность (отклонение от прямолинейности профиля поверхности) — наибольшее расстояние от точек действительного профиля (полученного в сечении поверхности нормальной плоскостью, проходящей в заданном направлении) до прилегающей прямой (рис. 47, а).
Допуск на непрямолинейность может быть отнесен ко всему участку проверяемой поверхности или к заданной длине.
Неплоскостность (отклонение от плоскостности) — наибольшее расстояние от точек действительной поверхности до прилегающей плоскости (рис. 47, б), Детали с плоскими поверхностями могут иметь дифференцированные отклонения в виде вогнутости (рис. 47, в) или выпуклости (рис. 47, г).
Рис. 47. Отклонение формы плоских поверхностей
а— непрямолинейность б — неплоскостность в— вогнутость г — выпуклость.
в) допускаемые отклонения поверхностей и осей от их взаимного расположения или расположения относительно базы (несоосность, торцовое или радиальное биение, отклонение от перпендикулярных и параллельных плоскостей или осей и т.д.).
Отклонением расположения называется отклонение от номинального распо-ложения рассматриваемой поверхности, ее оси или плоскости симметрии относительно баз или отклонение от номинального взаимного расположения рассматриваемых поверхностей.
Номинальное расположение определяется номинальными линейными и угловыми размерами между рассматриваемыми поверхностями, их осями или плоскостями симметрии.
Различают основные виды отклонений расположения:
1. Непараллельность — отклонение от параллельности либо плоскости, либо оси поверхности вращения и плоскости. Непараллельность характеризуется разностью наибольшего и наименьшего расстояний между плоскостью и осью поверхности на заданной длине: неперпендикулярность — отклонение от перпендикулярности плоскостей, осей или оси к плоскости — отклонение угла между плоскостями, осями или осью и плоскостью от прямого угла, выраженное в линейных единицах на заданной длине.
2. Несоосность — отклонение от соосности относительно базовой поверхности — наибольшее расстояние между осью рассматриваемой поверхности и осью базовой поверхности на всей длине рассматриваемой поверхности или расстояние между осями в заданном сечении.
Обычно на практике учитывают комплексные погрешности, которые складываются из погрешностей формы и положения. К таким погрешностям относятся:
· радиальное биение — разность наибольшего Аmax и наименьшего Аmin расстояний от точек реальной поверхности до базовой оси вращения в сечении, перпендикулярном этой оси (рис. 48, а). Радиальное биение является результатом смещения центра (эксцентриситета) рассматриваемого сечения относительно оси вращения и некруглости;
· торцевое биение — разность наибольшего и наименьшего расстояний а от точек реальной торцевой поверхности, расположенных на окружности заданного диаметра, до плоскости, перпендикулярной базовой оси вращения (рис. 48, б).
Если диаметр не задан, то торцевое биение определяется на наибольшем диаметре торцевой поверхности. Торцевое биение является результатом неперпендикулярности торцевой поверхности базовой оси и отклонений фирмы торца по линии измерения.
Рис. 48. Радиальное (а) и торцевое (б) биения
г) допускаемая шероховатость поверхности (микрогеометрические отклонения).
Точность обрабатываемой детали– степень соответствия её всем требованиям рабочего чертежа, технических условий и стандартов. Чем выше это соответствие, тем выше точность изготовления.
Действительные отклонения параметров реальной детали от заданных номинальных их значений – погрешность обработки.
Необходимая точность обработки может быть достигнута следующими основными методами.
МЕТОДЫ ОБЕСПЕЧЕНИЯ ТОЧНОСТИ ОБРАБОТКИ ДЕТАЛЕЙ
Допуск, указанный конструктором, при изготовлении деталей может быть выдержан несколькими способами. Они зависят прежде всего от производственных условий. При изготовлении деталей сравнительно малыми партиями оправдывает себя метод пробных ходов и измерений. Он состоит в том, что заготовку выверяют на станке, закрепляют и, совершая последовательно ряд пробных ходов режущего инструмента или заготовки, каждый раз определяют с помощью измерительных средств степень приближения размеров обрабатываемой поверхности заготовки к размерам готовой детали. В этом случае точность детали, т.е. фактическое отклонение размеров, формы и расположения, в наибольшей степени определяется квалификацией рабочего.
Способ позволяет добиться весьма высокой точности деталей, однако производительность оказывается, как правило, низкой, поскольку большое число рабочих ходов, выверка и измерения могут требовать больших затрат времени. Поэтому изготовление деталей со строгим соблюдением такта выпуска в этом случае исключается, а сам способ используют при обработке заготовок мелкими партиями.
Достоинства метода:
1. На неточном оборудовании можно получить высокую точность.
2. Исключается влияние износа режущего инструмента на точность, так как при проведении пробных ходов и замеров корректируется положение инструмента.
3. Исключает необходимость пользоваться сложными и дорогостоящими приспособлениями (кондукторами, поворотными и делительными головками и т.д.).
Недостатки:
1. Зависимость достигаемой точности от толщины снимаемой стружки,
т.е. нет возможности внести поправку в размер меньше толщины стружки.
2. Высокая квалификация исполнителя.
3. Низкая производительность, высокая себестоимость.
Используется в единичном, мелкосерийном производстве. В серийном – «спасение брака».