- Как научиться читать гидравлические схемы
- Обозначения гидравлических элементов на схемах
- Трубопроводы
- Фильтр
- Насос
- Гидромотор
- Гидравлический цилиндр
- Распределитель
- Устройства управления
- Клапан
- Предохранительный клапан
- Редукционный клапан
- Обратный клапан
- Дроссель
- Устройства измерения
- Реле давления
- Объединения элементов
- Порядок чтения гидралической схемы
- Скачать схемы гидравлических элементов
- Центробежный насос с электродвигателем: рассмотрим как работает
- Как работает центробежный насос с электродвигателем
- Почему возникают вибрации центробежного насоса
- Как обеспечить соосность насосного агрегата
Как научиться читать гидравлические схемы
Гидравлическая схема представляет собой элемент технической документации, на котором с помощью условных обозначений показана информация об элементах гидравлической системы, и взаимосвязи между ними. Согласно нормам ЕСКД гидравлические схемы обозначаются в шифре основной надписи литерой «Г» (пневматические схемы — литерой «П»).
Как видно из определения, на гидравлической схеме условно показаны элементы, которые связаны между собой трубопроводами — обозначенными линиям. Поэтому, для того, чтобы правильно читать гидравлическую схему нужно знать, как обозначается тот или иной элемент на схеме. Условные обозначения элементов указаны в ГОСТ 2.781-96. Изучите этот документ, и вы сможете узнать как обозначаются основные элементы гидравлики.
Обозначения гидравлических элементов на схемах
Рассмотрим основные элементы гидросхем.
Трубопроводы
Трубопроводы на гидравлических схемах показаны сплошными линиями, соединяющими элементы. Линии управления обычно показывают пунктирной линией. Направления движения жидкости, при необходимости, могут быть обозначены стрелками. Часто на гидросхемах обозначают линии — буква Р обозначает линию давления, Т — слива, Х — управления, l — дренажа.
Соединение линий показывают точкой, а если линии пересекаются на схеме, но не соединены, место пересечения обозначают дугой.
Бак в гидравлике — важный элемент, являющийся хранилищем гидравлической жидкости. Бак, соединенный с атмосферой показывается на гидравлической схеме следующим образом.
Закрытый бак, или емкость, например гидроаккумулятор, показывается в виде замкнутого контура.
Фильтр
В обозначении фильтра ромб символизирует корпус, а штриховая линия фильтровальный материал или фильтроэлемент.
Насос
На гидравлических схемах применяется несколько видов обозначений насосов, в зависимости от их типов.
Центробежные насосы, обычно изображают в виде окружности, в центр которой подведена линия всасывания, а к периметру окружности линия нагнетания:
Объемные (шестеренные, поршневые, пластинчатые и т.д) насосы обозначают окружностью, с треугольником-стрелкой, обозначающим направление потока жидкости.
Если на насосе показаны две стрелки, значит этот агрегат обратимый и может качать жидкость в обоих направлениях.
Если обозначение перечеркнуто стрелкой, значит насос регулируемый, например, может изменяться объем рабочей камеры.
Гидромотор
Обозначение гидромотора похоже на обозначение насоса, только треугольник-стрелка развернуты. В данном случае стрелка показывает направление подвода жидкости в гиромотор.
Для обозначения гидромотра действую те же правила, что и для обозначения насоса: обратимость показывается двумя треугольными стрелками, возможность регулирования диагональной стрелой.
На рисунке ниже показан регулируемый обратимый насос-мотор.
Гидравлический цилиндр
Гидроцилиндр — один из самых распространенных гидравлических двигателей, который можно прочитать практически на любой гидросхеме.
Особенности конструкции гидравлического цилиндра обычно отражают на гидросхеме, рассмотрим несколько примеров.
Цилиндр двухстороннего действия имеет подводы в поршневую и штоковую полость.
Плунжерный гидроцилиндр изображают на гидравлических схемах следующим образом.
Принципиальная схема телескопического гидроцилиндра показана на рисунке.
Распределитель
Распределитель на гидросхеме показывается набором, квадратных окон, каждое из которых соответствует определенному положению золотника (позиции). Если распределитель двухпозиционный, значит на схеме он будет состоять из двух квадратных окон, трех позиционный — из трех. Внутри каждого окна показано как соединяются линии в данном положении.
На рисунке показан четырех линейный (к распределителю подведено четыре линии А, В, Р, Т), трех позиционный (три окна) распределитель. На схеме показано нейтральное положение золотника распределителя, в данном случае он находится в центральном положении (линии подведены к центральному окну). Также, на схеме видно, как соединены гидравлические линии между собой, в рассматриваемом примере в нейтральном положении линии Р и Т соединены между собой, А и В — заглушены.
Как известно, распределитель, переключаясь может соединять различные линии, это и показано на гидравлической схеме.
Рассмотрим левое окно, на котором показано, что переключившись распределитель соединит линии Р и В, А и Т. Этот вывод можно сделать, виртуально передвинув распределитель вправо.
Оставшееся положение показано в правом окне, соединены линии Р и А, В и Т.
На следующем ролике показан принцип работы гидрораспределителя.
Понимая принцип работы распределителя, вы легко сможете читать гидравлические схемы, включающие в себя этот элемент.
Устройства управления
Для того, чтобы управлять элементом, например распределителем, нужно каким-либо образом оказать на него воздействие.
Ниже показаны условные обозначения: ручного, механического, гидравлического, пневматического, электромагнитного управления и пружинного возврата.
Эти элементы могут компоноваться различным образом.
На следующем рисунке показан четырех линейный, двухпозиционный распределитель, с электромагнитным управлением и пружинным возвратом.
Клапан
Клапаны в гидравлике, обычно показываются квадратом, в котором условно показано поведение элементов при воздействии.
Предохранительный клапан
На рисунке показано условное обозначение предохранительного клапана. На схеме видно, что как только давление в линии управления (показана пунктиром) превысит настройку регулируемой пружины — стрелка сместиться в бок, и клапан откроется.
Редукционный клапан
Также в гидравлических и пневматических системах достаточно распространены редукционные клапаны, управляющим давлением в таких клапанах является давление в отводимой линии (на выходе редукционного клапана).
Пример обозначения редукционного клапана показан на следующем рисунке.
Обратный клапан
Назначение обратного клапана — пропускать жидкость в одном направлении, и перекрывать ее движение в другом. Это отражено и на схеме. В данном случае при течении сверху вниз шарик (круг) отойдет от седла, обозначенного двумя линиями. А при подаче жидкости снизу — вверх шарик к седлу прижмется, и не допустит течения жидкости в этом направлении.
Часто на схемах обратного клапана изображают пружину под шариком, обеспечивающую предварительное поджатие.
Дроссель
Дроссель — регулируемое гидравлическое сопротивление.
Гидравлическое сопротивление или нерегулируемый дроссель на схемах изображают двумя изогнутыми линями. Возможность регулирования, как обычно, показывается добавлением стрелки, поэтому регулируемый дроссель будет обозначаться следующим образом:
Устройства измерения
В гидравлике наиболее часто используются следующие измерительные приборы: манометр, расходомер, указатель уровня, обозначение этих приборов показано ниже.
Реле давления
Данное устройство осуществляет переключение контакта при достижении определенного уровня давления. Этот уровень определяется настройкой пружины. Все это отражено на схеме реле давления, которая хоть и чуть сложнее, чем представленные ранее, но прочитать ее не так уж сложно.
Гидравлическая линия подводится к закрашенному треугольнику. Переключающий контакт и настраиваемая пружина, также присутствуют на схеме.
Объединения элементов
Довольно часто в гидравлике один блок или аппарат содержит несколько простых элементов, например клапан и дроссель, для удобства понимания на гидросхеме элементы входящие в один аппарат очерчивают штрих-пунктирой линией.
Порядок чтения гидралической схемы
Для чтения большинства гидравлических схем необходимо знать символы, обозначающие основные элементы и следовать алгоритму:
- Рассмотреть гидросхему, ознакомиться прочитать технические требования, характеристики, примечания (если они имеются);
- Ознакомиться с перечнем элементов, который должен сопровождать схему, сопоставить обозначения на гидравлической схеме с данными в перечне;
- Найти на схеме источники и накопители энергии жидкости (насосы, аккумуляторы, напорные башни питающие магистрали);
- Приблизительно оценить величину давления на различных участках системы, определить линии высокого давления, линии слива и дренажа;
- Найти на схеме клапаны регулирующие давление и расход — дроссели, редукционные и предохранительные клапаны, регуляторы расхода, краны;
- Подробно изучить работу гидравлических распределителей, представленных на схеме, понять какие участки схемы задействуются при переключении распределителей, разобраться с механизмами управления гидрораспределитлями;
- Найти на схеме исполнительные механизмы — гидроцилиндры;
- Провести анализ работы различных участков гидравлической системы;
- На основе анализа отдельных участки сделать вывод о работе всей гидравлической системы. При необходимости ознакомиться с технической документацией на ответственные пневмоаппараты.
Для того, чтобы правильно читать гидравлическую схему нужно знать условные обозначения элементов, разбираться в принципах работы и назначении гидравлической аппаратуры, уметь поэтапно вникать в особенности отдельных участков, и правильно объединять их в единую гидросистему.
Для правильного оформления гидросхемы нужно оформить перечень элементов согласно стандарту. Узнать как оформить перечень элементов на схеме.
Ниже показана схема гидравлического привода, позволяющего перемещать шток гидроцилиндра, с возможностью зарядки гидроаккумулятора.
Скачать схемы гидравлических элементов
Участники нашей группы в контакте могут скачать схемы гидравлических элементов. Среди ни обзначения различных тпиов:
- гидроцилиндров
- распределителей
- клапанов
- регуляторов расхода
- трубопроводов и линий связи
Центробежный насос с электродвигателем: рассмотрим как работает
Насос центробежный с электродвигателем
Центробежные насосы с электродвигателем, в отличие от обычных конструкций, представляют собой устройства, состоящие из двух основных узлов: центробежного лопастного насоса и электродвигателя. Так же как и все центробежные насосы, они преобразуют механическую энергию, поступающую от двигателя, в энергию для создания потока жидкости, которая обеспечивает ее движение и в системе напор.
Как монтируется электроцентробежный насос в системе своими руками, предлагается узнать из статьи.
Как работает центробежный насос с электродвигателем
На схеме, представленной ниже, показано устройство внутренней части центробежного насоса и соединение его с электродвигателем.
В корпусе, поз. 1, который имеет вид улитки, заключено рабочее колесо, на нем расположены лопасти. Эти элементы находятся на валу электродвигателя. Всасывающий и напорный трубопроводы присоединяются к нагнетательному и приемному отверстиям.
Вода, которая заполняет насос, под действием центробежной силы, возникающей от вращения рабочего колеса его лопастями, выбрасывается в напорный трубопровод из корпуса. При оборотах рабочего колеса создается разрежение во всасывающем патрубке устройства, за счет этого во всасывающий трубопровод непрерывно поступает вода.
Совет: Центробежные насосы могут работать лишь при заполнении рабочего колеса, а значит и всасывающего трубопровода, водой. Поэтому, для удержания воды внутри насоса, если он остановлен, на конце трубопровода для всасывания необходимо установить приемное устройство, имеющее обратный клапан.
Если насос электроцентробежный в работу запускается впервые после завершения монтажных работ или ремонта, необходимо в его корпус предварительно залить воду. При этом нужно следить, чтобы не было образования воздушных пробок.
Основные показатели работы насосов являются:
Выбирая насосы центробежные с электродвигателем нужно обращать внимание, что его производительность должна соответствовать часовому расходу жидкости в системе, а напор должен быть достаточным для подъема воды на нужную высоту, и смог преодолеть сопротивление трубопроводов и арматуры.
Почему возникают вибрации центробежного насоса
Часто при эксплуатации центробежных насосных агрегатов возникает проблема вибрации, когда в качестве привода берутся электродвигатели. Существует несколько способов, как правильно и достаточно быстро установить эту причину.
Совет: Повышенная вибрация сильно уменьшает надежность оборудования. В этом случае у насоса и мотора могут подшипниковые узлы выйти из строя, к тому же у электродвигателя могут появиться изгиб или даже излом вала, в торцовой крышке или в станине статора возможно появление трещины.
От вибрации у насосного агрегата могут получить повреждения опорная рама и фундамент. Все это требует своевременного устранения вибраций агрегата.
Вибрации возможны, если:
- Была нарушена инструкция по эксплуатации насоса.
- Произведена неправильно центровка насоса и электродвигателя.
- Плохое качество изготовления соединительной муфты, износе ее элементов:
- пальцев;
- отсутствие соосности отверстий под пальцы;
- отсутствие соосности полумуфт.
- Дисбаланс колеса или ротора, приводного насоса. Такой дефект особенно часто встречается у насосов, имеющих высокую частоту вращения или у насосов, где плохо отбалансировано рабочее колесо.
- Дисбаланс ротора электродвигателя.
- Установлены дефектные подшипники в насосе или электродвигателе.
- Несоблюдение технологии изготовления фундамента и основания для агрегата.
- Получил изгиб вал.
- Ослабилась фиксация отдельных элементов насоса и электродвигателя: торцовых крышек, подшипников.
В каждой инструкции по эксплуатации центробежного насоса указывается о проведении пробного пуска электромотора, который должен быть отсоединен от насоса, чтобы определить направление вращения. Здесь необходимо обратить внимание: нет ли вибрации электродвигателя при холостом ходе.
Совет: Если в момент пуска электродвигатель и на холостом ходу работает без вибрации, тогда причины этого процесса следует искать: в неправильной центровке; в изношенных пальцах или самих полумуфт; присутствии дисбаланса в подсоединенном насосе.
- Если вибрация существует на холостом ходу, причиной ее является неисправность самого двигателя. В этом случае следует проверить, останется ли вибрация непосредственно после отключения агрегата от сети.
- Если после отключения напряжения вибрация сразу же исчезла, это указывает, что имеется неравномерный зазор между ротором и статором.
- При пуске сильная вибрация на холостом ходу может указывать на неравномерный зазор, обрыв в обмотке ротора стержня.
- Если при отсоединении двигателя от насоса, после отключения от сети вибрация пропадает не сразу, а постепенно снижается по мере уменьшения числа оборотов, то причина кроется в дисбалансе ротора.
- Легко обнаруживается вибрация, возникающая от износа или дефектов подшипников электродвигателя. Неисправный подшипник начинает сильно шуметь и греться.
В случае отсутствия вибрации электродвигателя на холостом ходу необходимо:
- Проверить есть ли центровка насоса с электродвигателем и состояние соединительной муфты.
- Проверяется соответствие режима эксплуатации насоса паспортным характеристикам.
Чаще всего в этом случае имеются две причины вибрации:
- Насос эксплуатируется вне рабочей зоны, указанной в паспорте. Для проверки характеристик используется манометр, и замеряются им показания на выходе напора из насоса, и, при необходимости, производится регулировка задвижкой на напорном трубопроводе.
- Насос эксплуатируется в режиме кавитации: причинами в этом случае могут быть: не полностью открыта задвижка; засорение всасывающего трубопровода. Проверка производится замером показаний вакуумметра на всасывающем трубопроводе, а затем полученные величины сравниваются с паспортными данными.
Как обеспечить соосность насосного агрегата
Совет: Надежность и долговечность работы насосного агрегата зависит от соосности вала насоса и электродвигателя: их оси в пространстве должны располагаться на одной прямой.
Даже при четком соблюдении технологии изготовления и сборки всех деталей и узлов агрегата не всегда выдерживается соосность при агрегировании. Поэтому существует необходимость центрировать валы насоса и электродвигателя.
Эту операцию выполняют на общей плите, регулировкой их положения с помощью прокладок. Завод-изготовитель эту работу выполняет перед отправкой заказчику агрегированных насосов.
Однако центровка может быть нарушена:
- При транспортировке.
- При деформации фундаментной плиты, изготовленной небольшой толщины.
- От старения металла.
- При неравномерном прилегании плиты агрегата к фундаменту.
На рис. 1 приведена схема отклонения от соосности валов.
Рис. 1 Отклонение от соосности
- Смещение в горизонтальной плоскости. Оси остаются параллельными.
- Смещение в вертикальной плоскости. Оси скрещиваются.
В обоих случаях, при превышении определенных значений величин, агрегат работает ненормально:
- Появляется шум.
- Возникает вибрация.
- Увеличивается потребляемая мощность.
- Перегреваются подшипники.
- Греется муфта.
Детали электродвигателя и насоса при таких отклонениях изнашиваются намного быстрее обычного. Быстроходность и масса вращающихся деталей влияют на величину допустимых отклонений от соосности валов. Чем выше цена агрегата, тем более жесткие требования должны предъявляться к соосности.
Определение соосности валов показано на фото.
Измерение отклонений от соосности
Центровка валов насоса и электродвигателя должна производиться с соблюдением следующих основных положений:
- В агрегатах с редуктором основным элементом является редуктор. Его устанавливают, выверяют правильность монтажа и фиксируют штифтами.
- Электродвигатель, насос и гидромуфту центруют по редуктору.
- В устройствах с гидромуфтой насос и электрический двигатель центруют по гидромуфте, перед этим ее предварительно выверяют, затем крепят и фиксируют.
- В агрегатах, где отсутствует редуктор, центровку производят по насосу, предварительно выверенному и закрепленному.
- Центровку агрегата без общей плиты, производят в два этапа:
- предварительно: перед заливкой болтов для фундамента;
- окончательно: после фиксации насоса к фундаменту.
- Центрировать агрегат, имеющий общую фундаментную плиту, необходимо производить после ее выверки, подливки и затяжки болтов, фиксирующих фундамент.
- Валы насосного агрегата окончательно центруют после присоединения трубопроводов к нему.
Как выполняется центрирование валов насоса и электродвигателя хорошо показано на видео в этой статье.