- Машина Тьюринга
- Что собой представляет машина Тьюринга?
- Пример работы машины Тьюринга
- Машина Тьюринга
- Содержание
- Определение [ править ]
- Определение машины [ править ]
- Определение процесса работы [ править ]
- Результат работы [ править ]
- Примеры машин Тьюринга [ править ]
- Прибавление единицы [ править ]
- Проверка того, является ли слово палиндромом [ править ]
- Варианты машины Тьюринга [ править ]
- Многодорожечная машина Тьюринга [ править ]
- Машина Тьюринга с полубесконечной лентой [ править ]
- Многоленточная машина Тьюринга [ править ]
- Универсальная машина Тьюринга [ править ]
Машина Тьюринга
В 1936 г. Аланом Тьюрингом для уточнения понятия алгоритма был предложен абстрактный универсальный исполнитель. Его абстрактность заключается в том, что он представляет собой логическую вычислительную конструкцию, а не реальную вычислительную машину. Термин «универсальный исполнитель» говорит о том, что данный исполнитель может имитировать любой другой исполнитель. Например, операции, которые выполняют реальные вычислительные машины можно имитировать на универсальном исполнителе. В последствие, придуманная Тьюрингом вычислительная конструкция была названа машиной Тьюринга.
Кроме того, предполагается, что универсальный исполнитель должен уметь доказывать существование или отсутствие алгоритма для той или иной задачи.
Что собой представляет машина Тьюринга?
Машина Тьюринга состоит из бесконечной в обе стороны ленты, разделенной на ячейки, и автомата (головки), которая управляется программой.
Программы для машин Тьюринга записываются в виде таблицы, где первые столбец и строка содержат буквы внешнего алфавита и возможные внутренние состояния автомата (внутренний алфавит). Содержимое таблицы представляет собой команды для машины Тьюринга. Буква, которую считывает головка в ячейке (над которой она находится в данный момент), и внутренне состояние головки определяют, какую команду нужно выполнить. Команда определяется пересечением символов внешнего и внутреннего алфавитов в таблице.
Чтобы задать конкретную машину Тьюринга, требуется описать для нее следующие составляющие:
- Внешний алфавит. Конечное множество (например, А), элементы которого называются буквами (символами). Одна из букв этого алфавита (например, а0) должна представлять собой пустой символ.
- Внутренний алфавит. Конечное множество состояний головки (автомата). Одно из состояний (например, q1) должно быть начальным (запускающим программу). Еще одно из состояний (q0) должно быть конечным (завершающим программу) – состояние останова.
- Таблица переходов. Описание поведения автомата (головки) в зависимости от состояния и считанного символа.
Автомат машины Тьюринга в процессе своей работы может выполнять следующие действия:
- Записывать символ внешнего алфавита в ячейку (в том числе и пустой), заменяя находившийся в ней (в том числе и пустой).
- Передвигаться на одну ячейку влево или вправо.
- Менять свое внутреннее состояние.
Одна команда для машины Тьюринга как раз и представляет собой конкретную комбинацию этих трех составляющих: указаний, какой символ записать в ячейку (над которой стоит автомат), куда передвинуться и в какое состояние перейти. Хотя команда может содержать и не все составляющие (например, не менять символ, не передвигаться или не менять внутреннего состояния).
Пример работы машины Тьюринга
Допустим, на ленте есть слово, состоящее из символов #, $, 1 и 0. Требуется заменить все символы # и $ на нули. В момент запуска головка находится над первой буквой слова слева. Завершается программа тогда, когда головка оказывается над пустым символом после самой правой буквы слова.
Примечание: длина слова и последовательность символов значения не имеют. На рисунке приводится пример последовательности выполнения команд для конкретного случая. Если на ленте будет другое слово, то и последовательность выполнения команд будет другой. Несмотря на это, данная программа для машины Тьюринга (на рисунке – таблица слева) применима к любым словам описанного внешнего алфавита (соблюдается свойство применимости алгоритма ко всем однотипным задачам – массовость).
Можно усложнить программу. Допустим, головка располагается не обязательно над первым, а над любым символом слова. Тогда программа для данной машины Тьюринга может быть такой (а могла бы быть и другой):
Здесь происходит сдвиг головки влево до тех пор, пока она не окажется над пустым символом. После этого машина переходит в состояние q2 (команды которого совпадают с командами q1 предыдущей программы).
Машина Тьюринга
Содержание
Машина Тьюринга (англ. Turing machine) — модель абстрактного вычислителя, предложенная британским математиком Аланом Тьюрингом в 1936 году. Эта модель позволила Тьюрингу доказать два утверждения. Первое — проблема останова неразрешима, т.е. не существует такой машины Тьюринга, которая способна определить, что другая произвольная машина Тьюринга на её ленте зациклится или прекратит работу. Второе — не существует такой машины Тьюринга, которая способна определить, что другая произвольная машина Тьюринга на её ленте когда-нибудь напечатает заданный символ. В этом же году был высказан тезис Чёрча-Тьюринга, который терминах теории рекурсии формулируется как точное описание интуитивного понятия вычислимости классом общерекурсивных функций. В этой формулировке часто упоминается как просто тезис Чёрча. В терминах вычислимости по Тьюрингу тезис гласит, что для любой алгоритмически вычислимой функции существует вычисляющая её значения машина Тьюринга. В виду того, что классы частично вычислимых по Тьюрингу и частично рекурсивных функций совпадают, утверждение объединяют в единый тезис Чёрча — Тьюринга.
Неформально машина Тьюринга определяется как устройство, состоящее из двух частей:
- бесконечной одномерной ленты, разделённой на ячейки,
- головки, которая представляет собой детерминированный конечный автомат.
При запуске машины Тьюринга на ленте написано входное слово, причём на первом символе этого слова находится головка, а слева и справа от него записаны пустые символы. Каждый шаг головка может перезаписать символ под лентой и сместиться на одну ячейку, если автомат приходит в допускающее или отвергающее состояние, то работа машины Тьюринга завершается.
Определение [ править ]
Определение машины [ править ]
Определение: |
Формально машина Тьюринга (англ. Turing machine) определяется как кортеж из восьми элементов [math]\langle \Sigma, \Pi, B, Q, Y, N, S, \delta \rangle[/math] , где
|
Отметим, что существуют различные вариации данного выше определения (например, без отвергающего состояния или с множеством допускающих состояний), которые не влияют на вычислительные способности машины Тьюринга.
Определение процесса работы [ править ]
Кроме формального определения самой машины требуется также формально описать процесс её работы. В определении для простоты будем предполагать, что головка в процессе работы не записывает на ленту символ [math]B[/math] . Это не ограничивает вычислительной мощности машин Тьюринга, поскольку для каждой машины можно сопоставить аналогичную ей, но не пищущую [math]B[/math] на ленту.
Определение: |
Назовём конфигурацией машины Тьюринга тройку [math]\langle w, q, v \rangle[/math] , где
|
В данной записи головка находится над ячейкой, на которой написана первая буква [math]v[/math] (или [math]B[/math] , если [math]v = \varepsilon[/math] ).
В дальнейшем используются следующие обозначения: [math]x, y, z \in \Pi[/math] , [math]w, v \in \Pi^*[/math]
Определение: |
Определим на конфигурациях отношение перехода [math]\langle w_1, q_1, v_1 \rangle \vdash \langle w_2, q_2, v_2 \rangle[/math] :
Особо следует рассмотреть случай переходов по пробельному символу:
|
Очевидно, что определённое отношение является функциональным: для каждой конфигурации [math]C[/math] существует не более одной конфигурации [math]C'[/math] , для которой [math]C \vdash C'[/math] .
Для машины Тьюринга, которая пишет символ [math]B[/math] на ленту также можно дать аналогичное формальное определение. Оно будет отличаться тем, что символы в строчках конфигурации могут содержать пробелы, и для того, чтобы эти строчки имекли конечную длину, нужно аккуратно учесть наличие пробелов при записи правил перехода.
Результат работы [ править ]
Машину Тьюринга можно рассматривать как распознаватель слов формального языка. Пусть [math]M[/math] — машина Тьюринга, распознаваемый ей язык определяется как [math]\mathcal L(M) = \< x \in \Sigma^* \mid \exists y, z \in \Pi^*: \langle \varepsilon, S, x \rangle \vdash^* \langle y, Y, z \rangle \>[/math] .
Также можно рассматривать машины Тьюринга как преобразователь входных данных в выходные. Машина [math]M[/math] задаёт вычислимую функцию [math]f[/math] , причём [math]f(x) = y \Leftrightarrow \exists z \in \Pi^* : \langle \varepsilon, S, x \rangle \vdash^* \langle z, Y, y \rangle[/math] . Переход автомата в состояние [math]N[/math] можно интерпретировать как аварийное завершение программы (например, при некорретном входе).
Примеры машин-распознавателей и машин-преобразователей будут даны ниже.
Примеры машин Тьюринга [ править ]
Прибавление единицы [ править ]
Для начала приведём пример машины-преобразователя, которая прибавляет единицу к числу, записанному на ленте в двоичной записи от младшего бита к старшему. Алгоритм следующий:
- в стартовом состоянии головка идёт вправо от младшего бита к старшему, заменяя все единицы на нули,
- встретив нуль или пробельный символ головка записывает единицу, после чего переходит в состояние [math]R[/math] ,
- в состоянии [math]R[/math] головка идёт влево от старшего бита к младшему, не изменяя символы 0 и 1 на ленте,
- встретив в состоянии [math]R[/math] пробельный символ, головка перемещается на один символ вправо и переходит в состояние [math]Y[/math] , завершая работу.
Формально: [math]\Sigma = \<0, 1 \>[/math] , [math]\Pi = \<0, 1, B\>[/math] , [math]Q = \[/math] . Таблица функции [math]\delta[/math] приведена ниже:
[math]0[/math] | [math]1[/math] | [math]B[/math] | |
[math]S[/math] | [math]\langle R, 1, \downarrow \rangle[/math] | [math]\langle S, 0, \rightarrow \rangle[/math] | [math]\langle R, B, \leftarrow \rangle[/math] |
[math]R[/math] | [math]\langle R, 0, \leftarrow \rangle[/math] | [math]\langle R, 1, \leftarrow \rangle[/math] | [math]\langle Y, B, \rightarrow \rangle[/math] |
Проверка того, является ли слово палиндромом [ править ]
В качестве примера машины-распознавателя приведём машину, распознающую палиндромы над алфавитом [math]\<0, 1\>[/math] . Алгоритм следующий:
- если строка на ленте — пустая, то перейти в допускающее состояние
- надо запомнить первый символ слова в состоянии автомата,
- стереть его,
- перейти в конец ленты:
- если оставшаяся строка на ленте — пустая, то перейти в допускающее состояние
- если последний символ совпадает с запомненным, стереть его, перейти в начало ленты и повторить с первого шага
- в случае несовпадения перейти в отвергающее состояние
Формально: [math]\Sigma = \<0, 1\>[/math] , [math]\Pi = \<0, 1, B\>[/math] , [math]Q = \[/math] . Таблица функции [math]\delta[/math] приведена ниже:
[math]0[/math] | [math]1[/math] | [math]B[/math] | |
[math]S[/math] | [math]\langle F_0, B, \rightarrow \rangle[/math] | [math]\langle F_1, B, \rightarrow \rangle[/math] | [math]\langle Y, B, \downarrow \rangle[/math] |
[math]F_0[/math] | [math]\langle F_0, 0, \rightarrow \rangle[/math] | [math]\langle F_0, 1, \rightarrow \rangle[/math] | [math]\langle B_0, B, \leftarrow \rangle[/math] |
[math]F_1[/math] | [math]\langle F_1, 0, \rightarrow \rangle[/math] | [math]\langle F_1, 1, \rightarrow \rangle[/math] | [math]\langle B_1, B, \leftarrow \rangle[/math] |
[math]B_0[/math] | [math]\langle R, B, \leftarrow \rangle[/math] | [math]\langle N, 1, \downarrow \rangle[/math] | [math]\langle Y, B, \downarrow \rangle[/math] |
[math]B_1[/math] | [math]\langle N, 0, \downarrow \rangle[/math] | [math]\langle R, B, \leftarrow \rangle[/math] | [math]\langle Y, B, \downarrow \rangle[/math] |
[math]R[/math] | [math]\langle R, 0, \leftarrow \rangle[/math] | [math]\langle R, 1, \leftarrow \rangle[/math] | [math]\langle S, B, \rightarrow \rangle[/math] |
Варианты машины Тьюринга [ править ]
В этом разделе приведены различные варианты машин Тьюринга, которые не отличаются от обычных машин Тьюринга по вычислительной мощности.
Многодорожечная машина Тьюринга [ править ]
Машиной Тьюринга с [math]n[/math] дорожками называется вычислитель, аналогичный машине Тьюринга, лишь с тем отличием, что лента состоит из [math]n[/math] дорожек, на каждой из которых записаны символы ленточного алфавита. У многодорожечной машины одна головка, которая за один шаг переходит в одном направлении на всех дорожках одновременно. Соответственно, функция перехода имеет тип [math]\delta : Q \times \Pi^n \to Q \times \Pi^n \times \<\leftarrow, \rightarrow, \downarrow\>[/math] . Многодорожечная машина Тьюринга тривиально эквивалентна обычной с ленточным алфавитом [math]\Pi’ = \Pi^n[/math] .
Машина Тьюринга с полубесконечной лентой [ править ]
Заменив у машины Тьюринга бесконечную в обе стороны ленту на бесконечную в одну сторону, мы не теряем в вычислительной мощности. По произвольной машине Тьюринга строится двухдорожечная машина с полубесконечной лентой.
Существует алгоритм, по которому для любой машины Тьюринга может быть построена эквивалентная машина Тьюринга с объявленным свойством. Сначала занумеруем ячейки рабочей ленты машины Тьюринга с бесконечной лентой следующим образом:
Затем перенумеруем ячейки, и запишем символ [math]c \in \Pi \setminus \Sigma, B[/math] в начало ленты, который будет означать границу рабочей зоны:
Наконец, изменим машину Тьюринга, удвоив число её состояний, и изменим сдвиг головки так, чтобы в одной группе состояний работа машины была бы эквивалентна её работе в заштрихованной зоне, а в другой группе состояний машина работала бы так, как исходная машина работает в незаштрихованной зоне. Если при работе машины Тьюринга встретится символ [math]c[/math] , значит головка достигла границы рабочей зоны:
Начальное состояние новой машины Тьюринга устанавливается в одной или другой зоне в зависимости от того, в какой части исходной ленты располагалась головка считывания-записи в исходной конфигурации.
Многоленточная машина Тьюринга [ править ]
В отличие от многодорожечной машины Тьюринга, ленты не зависят друг от друга и головки во время одного шага могут перемещаться по-разному. То есть, функция перехода теперь имеет тип [math]\delta : Q \times \Pi^n \to Q \times \Pi^n \times \<\leftarrow, \rightarrow, \downarrow\>^n[/math] .
Многоленточная машина с [math]n[/math] дорожками эмулируется многодорожечной машиной с [math]2n[/math] дорожками следующим образом: каждая нечётная дорожка соответствует ленте исходной машины, а на каждой чётной дорожке отмечены специальным символом [math]*[/math] позиция головки на ленте выше (считаем, что ленты нумеруются сверху вниз).
Каждый шаг исходной машины эмулируется конечной последовательностью шагов построенной машины следующим образом: исходно головка находится в позиции самой левой отметки и идёт вправо до самой правой отметки, запоминая прочитанные около символов [math]*[/math] символы в состоянии. Пройдя до самой правой отметки, головка возвращается влево, совершая необходимые действия (переписывая символы около отметок и передвигая сами отметки). После такого прохода головка переходит в следующее состояние, завершая эмуляцию шага.
Аланом Тьюрингом было сформулировано следующее утверждение:
Утверждение (Тезис Чёрча-Тьюринга): |