Кпд ведущих колес автомобиля

К.п.д. автомобильного колеса при работе в ведущем режиме.

У ведущего колеса кроме силовых потерь, есть еще и скоростные потери, связанные с изменением кинематического радиуса колеса: с увеличением Тк уменьшается rк, следовательно, при той же частоте вращения колеса его скорость уменьшается. Оценим это:

где Ра, Рf, PΔV мощность,затрачиваемая колесом соответственно на перемещение автомобиля, сопротивление качению и скоростные потери (частичная пробуксовка колеса в контакте с дорогой).

Найдем мощность скоростных потерь по разности радиуса в ведомом режиме (≈статическому радиусу) и кинематического радиусов:

=ωк (rк0 – rк)

ΔP = Rx = Rх ·ωк (rк0 – rк).

ΔP = Rx = Rх 2 ·ωк λх

Примечание: Мощность скоростных потерь пропорциональна квадрату реализуемой горизонтальной реакции. Разделение Rx по нескольким мостам позволяет уменьшить скоростные потери.

Tк ·ωк = Rx ·ωк · rк + Тf · ωк + Rх · ωк · rк0 – Rх · ωк · rк;

Сократив ωк, получим .

КПД автомобильного колеса:

Коэффициент полезного действия – отношение мощности, снятой с колеса к мощности, подведенной к колесу.

Мощность снятая с колеса – произведение касательной реакции в контакте колеса с дорогой, толкающей через подвеску автомобиль ( Rx), на скорость поступательную скорость движения оси колеса (Vk = ώ k rk, Таким образом, к.п.д. автомобильного колеса при работе в ведущем режиме определится следующим образом:

,

.

rк/rк0 коэффициент скоростных потерь;

Коэффициент полезного действия ведущего колеса.

КПД ведущего колеса ηк можно установить по величине сопротивления качению и величине буксования, если таковое присутствует.

В первом случае коэффициент полезного действия, учитывающий сопротивление качению f, определяется относительной долей потерянного момента, подведенного к колесу:

Рис.4. Силы и моменты, действующие на колесо при торможении

Второй коэффициент полезного действия ηδ учитывает эффект буксования ведущего колеса

где δ – буксование, взятое в процентах.

Таким образом, мощность, полезно используемая ведущими колесами машины, равна:

Физически коэффициент полезного действия ведущего колеса представляет собой отношение работы, производимой этим колесом, к энергии, подводимой к колесу.

Читайте также:  Ремонт двигателя для зернодробилки

КПД ведущего колеса зависит от соотношения между тяговым усилием и нагрузкой на колесо. Например, для ведущего колеса автотягача с шиной 11,00 – 36 при внутреннем давлении в ней 0,085 МПа его коэффициент полезного действия достигает 80% при отношении тягового усилия к нагрузке на колесо, равном 0,4. С увеличением этого отношения до 0,7 КПД ведущего колеса снижается до 50%.

Вопрос. КПД ведущего колеса.

Ответ. КПД ведущего колеса ηк можно установить по величине сопротивления качению и величине буксования, если таковое присутствует.

В первом случае коэффициент полезного действия, учитывающий сопротивление качению f, определяется относительной долей потерянного момента, подведенного к колесу:

Рис.4. Силы и моменты, действующие на колесо при торможении

автомобиля.

Второй коэффициент полезного действия ηδ учитывает эффект буксования ведущего колеса

где δ – буксование, взятое в процентах.

Таким образом, мощность, полезно используемая ведущими колесами машины, равна:

Физически коэффициент полезного действия ведущего колеса представляет собой отношение работы, производимой этим колесом, к энергии, подводимой к колесу.

КПД ведущего колеса зависит от соотношения между тяговым усилием и нагрузкой на колесо. Например, для ведущего колеса автотягача с шиной 11,00 – 36 при внутреннем давлении в ней 0,085 МПа его коэффициент полезного действия достигает 80% при отношении тягового усилия к нагрузке на колесо, равном 0,4. С увеличением этого отношения до 0,7 КПД ведущего колеса снижается до 50%.

Тяговые свойства ведущего колеса по сцеплению его с дорогой.

Касательная сила тяги, приложенная к колесу, направлена в сторону, противоположную движению. Ее величина ограничивается прочностью (сцеплением φ) между рабочей частью поверхности шины и дороги. Условие движения ведущего колеса без буксования:

Если коэффициент сопротивления качению мал, то приближенно можно принять:

то есть для того, чтобы не было пробуксовывания, тяговая сила на ведущих колесах не должна превосходить силы сцепления. В том случае, когда соотношение между касательной силой тяги и силой сцепления удовлетворяет данному условию, тяговая сила ведущих колес будет полностью использоваться для движения автомобиля. В противном случае, будет иметь место пробуксовывание на дороге, и для движения автомобиля будет использоваться только часть тяговой силы, равная силе сцепления Gкφ.

Читайте также:  Тест драйв со звездами

Очевидно, что пробуксовывание приводит к снижению скорости машины. Относительное снижение скорости из-за буксования определяется величиной:

,

где vt – теоретическая скорость движения машины без буксования;

v – действительная скорость движения машины.

Величину буксования можно определить и по отношению пути, потерянного на буксование за один оборот колеса, к теоретическому пути без буксования также за один оборот колеса:

,

где St –путь, проходимый колесом без буксования за один оборот;

St – действительный путь, проходимый за один оборот при тяговой эксплуатации.

Обычно сила Рк может ограничиваться по силе сцепления при трогании с места или при преодолении повышенных сопротивлений на скользкой дороге. Ограничение тяговой силы по силе сцепления происходит чаще, когда автомобиль используется в качестве тягача для буксировки прицепа.

Для нахождения силы сцепления ведущих колес с дорогой необходимо знать нагрузку, воспринимаемую дорогой от каждого колеса автомобиля.

Распределение нагрузки на колесах двухосного автомобиля, стоящего неподвижно на горизонтальной площадке, определяется положением его центра массы:

; .

Здесь а и b – отрезки, определяющие положение центра масс (ЦМ) автомобиля в продольной плоскости, L — база автомобиля(рис.5).

Рис.5. Распределение нагрузки на колеса двухосного автомобиля.

Очевидно, G1+ G2 = G. Практически величины G1 и G2 определяются путем взвешивания отдельно передней и задней частей автомобиля. По экспериментально определенным значениям G1 и G2 легко рассчитать (обратная задача) положение центра массы (отрезки а и b), используя для этого приведенные выше формулы.

При движении автомобиля возникают дополнительные силы и моменты, которые перераспределяют нагрузки на колеса. Например, сила сопротивления воздуха и подъему, бокового ветра, сила инерции при ускоренном или замедленном движении автомобиля и др.
Коэффициент сцепления ведущего колеса с дорого
й
Коэффициент сцепления колеса с дорогой φ представляет собой отношение той силы, которая может вызвать относительное перемещение опорной поверхности шины колеса по дороге, к реакции дороги на колесо, направленное нормально к поверхности дороги. Это определение аналогично установленному в механике определению коэффициента трения первого рода между двумя твердыми телами. Поэтому часто считают, что коэффициент сцепления и коэффициент трения -–понятия равнозначащие. Это положение весьма близко к действительности для дорог с твердым покрытием. Здесь передача тангенциальных усилий от колеса к дороге обуславливается почти исключительно трением между опорной поверхностью шины и дорогой.
Взаимодействие колеса с дорогой, имеющей мягкое покрытие (песок, щебень и т.п.) происходит иначе. В этом случае под влиянием тангенциальных усилий между дорогой и шиной происходит частичное разрушение контактной поверхности (смятие, сдвиг и т.д.), что вызывает проскальзывание или буксование ведущего колеса. Коэффициент сцепления при этом отличается от определения коэффициента трения.
Коэффициент сцепления колеса на таких дорогах трудно определим расчетным путем и выясняется проведением экспериментальных исследований. Исследуемый автомобиль с полностью заторможенными колесами буксируется с помощью специального тягача при одновременном измерении усилия на сцепке с помощью динамометра. Отношение этого усилия к полному весу буксируемого автомобиля представляет собой коэффициент сцепления.
Этим способом можно определить величину φ на дорогах с покрытиями различного типа. Существуют и другие способы определения φ, например, торможением автомобиля на исследуемом участке дороге с одновременным измерением тормозных путей.
Автомобиль с одинарными шинам обладает более высокой проходимостью по сравнению с автомобилем, оснащенным спаренными шинами. Объясняется это тем, что при наличии второй шины при движении по мягкой дороге (глина, песок, снег) дополнительно расходуется мощность на образование второй колеи. Кроме того, при переходе от спаренных колес к одинарным неизбежно должен быть увеличен диаметр шины (по соображениям сохранения заданного удельного давления в зоне контакта колеса с дорогой), что также благоприятно сказывается на повышении проходимости.
Большое влияние на тягово-сцепные качества автомобиля оказывают геометрические параметры грунтозацепов протектора шины. Грунтозацепы шины ведущего колеса, погружаясь в грунт, деформируют его не только в радиальном, но и в тангенциальном направлении, и постепенно уплотняют. По мере уплотнения грунта в тангенциальном направлении, его сопротивление сдвигу возрастает до некоторого предела, после чего начинается разрушение (сдвиг) грунта. Соответственно этому по мере деформации грунта, внешним проявлением чего служит частичная пробуксовка шины (ее поворачивание на угол, соответствующей величине уплотнения грунта), коэффициент сцепления возрастает до некоторого максимума, а затем падает до величины, характеризуемой внутренним трением между частицами грунта.

Читайте также:  Как настроить двигатель мопеда

По дисциплине «Конструкция и эксплуатационные свойства ТиТТМО»

Оцените статью