Контроллер для бесщеточного двигателя схема

Контроллер для электровелосипеда и электроскутера

Контроллер управления для бесщеточного двигателя постоянного тока (BLDC, PMSM) – это важное звено в системе электрокомпонентов. Без контроллера электродвигатель не сможет даже запуститься, не говоря о его полноценной работе. Аккумуляторная батарея имеет 2 полюса – положительный и отрицательный, а мотор-колесо – 3 фазных провода. Поэтому подключить аккумулятор и двигатель напрямую невозможно. Для этого используется дополнительное звено – контроллер управления.

Выполняемые функции

Именно контроллер формирует в обмотке статора мотор-колеса вращающееся магнитное поле и получает ответные сигналы о позиции ротора. Сигналы поступают от датчиков Холла, а при управлении моторами без датчиков позиция роторов определяется по противо-ЭДС.

К тому же, контроллер управляет электродвигателем:

  • позволяет менять скорость движения – при смене положения ручки газа меняется число импульсов напряжения, подаваемых за секунду на обмотки, и вращение колеса ускоряется или замедляется;
  • обеспечивает рекуперацию энергии при торможении двигателем.

Контроллер выступает в роли понижающего преобразователя, поэтому проходящий по обмоткам мотора фазный ток может быть гораздо выше батарейного тока, поступающего от АКБ к контроллеру. Именно от него зависит мощность, поступающая на двигатель. Например, при использовании мотор-колеса номинальной мощностью 1000 Вт можно кратковременно получать значения до 2000–2500 Вт. Главное – использовать подходящий контроллер и постоянно контролировать температуру, чтобы не допустить перегрева двигателя.

Схема контроллера для электровелосипеда или электроскутера

Контроллер для электрического велосипеда или скутера имеет алюминиевый корпус, из которого выходят разноцветные провода с разъемами для подключения разных устройств. Внутри скрыты:

  • главный узел – микроконтроллер;
  • силовые компоненты – шунты для измерения тока, конденсаторы, транзисторы;
  • понижающие преобразователи на 12 В и 5 В – обеспечивающие питание микроконтроллера и периферических устройств (датчиков положения, рычага газа).

Схема подключения

Контроллер для электроскутера, е-байка или электросамоката подключается в соответствии с прилагаемой к нему схемой. Главное – не спешить и внимательно разобраться с назначением проводов. Лучше всего покупать контроллер в комплекте с мотор-колесом, тогда их разъемы будут гарантированно совместимыми.

Общий принцип подключения выглядит так:

  1. Толстые провода черного и красного цвета – с соблюдением полярности подводятся к аккумуляторной батарее. При этом может появиться «искра», и даже возможно подгорание разъемов. Это нормально – так заряжаются конденсаторы на входе контроллера. Чтобы исключить искрение, достаточно ненадолго соединить контроллер и АКБ через резистор с сопротивлением в десятки Ом или воспользоваться лампочкой. Когда конденсаторы зарядятся, контроллер можно спокойно соединить с АКБ без посредников.
  2. Тройка толстых проводов разных цветов – обеспечивают подключение к фазным проводам 3-фазного электромотора.
  3. Связка из 5 тоненьких разноцветных проводов – идет к проводкам мотор-колеса, обеспечивают питание и передачу сигналов от датчиков положения.
  4. Отдельный красный проводок – «зажигание». При его замыкании на «плюс» АКБ происходит включение контроллера.
  5. Тройка тонких проводов (обычно – черный, красный и зеленый) – для подключения ручки газа.

Разновидности контроллеров управления

По принципу взаимодействия с электромотором

Для использования с датчиками Холла

Совместимы с мотор-колесами, оснащенными датчиками Холла.

Для работы без датчиков

Совместимы с моторами без датчиков, определяют позицию роторов по противо-ЭДС.

Могут работать и с датчиками положения, и без них.

По виду выходного сигнала

Создающие сигналы прямоугольного вида (меандр)

Цена таких моделей – ниже. При их использовании обеспечивается увеличенная скорость, но из-за вибрации обмоток двигатель шумит сильнее.

Создающие чистые синусоидальные сигналы.

Дороже. Обеспечивают тихую работу мотора и небольшое снижение максимальной скорости – по сравнению с меандровым контроллером при том же напряжении АКБ.

Сознающие сигналы в виде «модифицированной синусоиды» или сглаженного меандра.

По принципу реагирования на сигналы ручки газа

Обеспечивающие управление скоростью, мощностью или крутящим моментом.

Как выбрать контроллер для электровелосипеда?

При выборе контроллера для электровелосипеда или другого транспорта на электротяге нужно оценить рабочие характеристики устройства. Ключевые параметры обычно указаны в маркировке. По ней можно узнать:

  • рабочее напряжение батареи и мощность мотора (номинал), для применения с которыми предназначено устройство;
  • предельный ток АКБ;
  • минимум напряжения АКБ, когда происходит отключение контроллера;
  • подходящее расположение датчиков Холла в электромоторе – в электрических градусах по отношению друг к другу.

Для расчета предельной мощности контроллера находим произведение допустимых величин напряжения и силы тока. Диапазон мощности у таких приборов широкий. Для велосипедов на электротяге обычно используются модели с номиналом мощности от 350 до 2000 Вт. Для электрических скутеров – от 1000 до 4000 Вт. Для электромотоциклов – от 5000 до 10 000 Вт. Для электромобилей – от 10 000 до 50 000 Вт и более.

Читайте также:  Бокс посуточно для ремонта грузовых автомобилей

О совместимости

Контроллер, рассчитанный на использование с батареей напряжением 36 В, не стоит подключать к АКБ большего вольтажа. Вначале необходимо вскрыть контроллер и проверить, рассчитаны ли на увеличенное напряжение его компоненты, включая транзисторы и конденсаторы. Возможно, понадобится заменить и резистор в делителе напряжения. Но в продаже встречаются универсальные контроллеры с большим разбросом допустимых входных напряжений, к примеру, от 48 до 72 В или от 24 до 100 В.

Программируемые модели и их задачи

Программируемые контроллеры соединяются по Bluetooth со смартфоном и позволяют настраивать рабочие характеристики – от значений аккумуляторного и фазного токов до углов фазного опережения.

При выборе управляющих контроллеров учитывается и наличие второстепенных функций:

  • круиз-контроля;
  • обратного хода;
  • возможности выбора скоростного режима или мощности;
  • рекуперации энергии при торможении;
  • отдельного выхода для электропитания фары и габаритных огней.

Расширение функционала

Широкий ассортимент контроллеров позволяет выбрать прибор, по максимуму подходящий под конкретные цели. Наряду с интернет-магазинами, есть специализированные мастерские, для которых не составляет проблемы вывести из контроллера управления провода под нужные заказчику функции.

Многие печатные платы имеют большой функционал, но в серийно поставляемых моделях он используется только частично. К примеру, у многих моделей не выведен провод для круиз-контроля, заднего хода, рекуперации энергии и других возможностей. Но специалисты мастерской VoltBikes могут вывести провода под конкретные задачи непосредственно при покупке контроллера.

О цене

Контроллеры можно купить в разных категориях:

  1. Дешевые модели, предназначенные для внутреннего китайского рынка. Они не имеют расширенного функционала и просто позволяют ехать. Как правило, бывают 2-режимные, могут работать совместно с датчиками Холла и без них.
  2. Китайские модели, ориентированные на экспорт. Позволяют подключать дисплеи и обеспечивать беспроводное управление по Bluetooth.
  3. Устройства производства Германии и США – самые дорогие.

Подключение бесколлекторного электродвигателя постоянного тока (BLDC) к Arduino

В настоящее время наблюдается небывалый интерес к конструированию различных летающих механизмов – дронов, планеров, глайдеров, вертолетов и т.д. Сейчас их можно легко сконструировать самостоятельно благодаря большому количеству материалов по ним в сети интернет. Все эти летающие механизмы используют для своего движения так называемые бесщёточные (бесколлекторные) электродвигатели постоянного тока (BLDC — Brushless DC Motor). Что представляют собой подобные двигатели? Почему именно они сейчас используются в различных летающих дронах? Как правильно купить подобный двигатель и подключить его к микроконтроллеру? Что такое ESC и почему мы будем его использовать? Ответы на все эти вопросы вы найдете в данной статье.

В этой статье мы рассмотрим управление скоростью вращения бессенсорного бесколлекторного электродвигателя постоянного тока A2212/13T (Sensorless BLDC outrunner motor), часто используемого для конструирования дронов, с помощью ESC (Electronic Speed Controller – электронный контроллер скорости) и платы Arduino.

Необходимые компоненты

  1. Плата Arduino Uno (купить на AliExpress).
  2. A2212/13T BLDC Motor (бесколлекторный электродвигатель постоянного тока).
  3. ESC (20A) (электронный контроллер скорости) (купить на AliExpress).
  4. Источник питания (12V 20A).
  5. Потенциометр 10 кОм (купить на AliExpress).

Принцип действия BLDC двигателей

Бесколлекторные электродвигатели постоянного тока (BLDC двигатели) в настоящее время часто используются в потолочных вентиляторах и электрических движущихся транспортных средствах благодаря их плавному вращению. В отличие от других электродвигателей постоянного тока BLDC двигатели подключаются с помощью трех проводов, выходящих из них, при этом каждый провод образует свою собственную фазу, то есть получаем трехфазный мотор.

Хотя BLDC относятся к двигателям постоянного тока они управляются с помощью последовательности импульсов. Для преобразования напряжения постоянного тока в последовательность импульсов и распределения их по трем проводникам используется контроллер ESC (Electronic speed controller). В любой момент времени питание подается только на две фазы, то есть электрический ток заходит в двигатель через одну фазу, и покидает его через другую. Во время этого процесса запитывается катушка внутри двигателя, что приводит к тому, что магниты выравниваются по отношению к запитанной катушке. Затем контроллер ESC подает питание на другие два провода (фазы) и этот процесс смены проводов, на которые подается питание, продолжается непрерывно, что заставляет двигатель вращаться. Скорость вращения двигателя зависит от того как быстро подается энергия на катушку двигателя, а направление вращения – от порядка смены фаз, на которые поочередно подается питание.

Существуют различные типы BLDC двигателей – давайте рассмотрим основные из них. Различают Inrunner и OutRunner BLDC двигатели. В Inrunner двигателях магниты ротора находятся внутри статора с обмотками, а в OutRunner двигателях магниты расположены снаружи и вращаются вокруг неподвижного статора с обмотками. То есть в Inrunner (по этому принципу конструируется большинство двигателей постоянного тока) ось внутри двигателя вращается, а оболочка остается неподвижной. А в OutRunner сам двигатель вращается вокруг оси с катушкой, которая остается неподвижной. OutRunner двигатели особенно удобны для применения в электрических велосипедах, поскольку внешняя оболочка двигателя непосредственно приводит в движение колесо велосипеда, что позволяет обойтись без механизма сцепления. К тому же OutRunner двигатели обеспечивают больший крутящий момент, что делает их также идеальным выбором для применения в электрических движущихся средствах и дронах. Поэтому и в этой статье мы будем рассматривать подключение к платы Arduino двигателя OutRunner типа.

Читайте также:  Mk cross geely mk cross тест драйв

Примечание : существует еще такой тип BLDC двигателей как бесстержневой (coreless), который находит применение в «карманных» дронах. Эти двигатели работают по несколько иным принципам, но рассмотрение принципов их работы выходит за рамки данной статьи.

BLDC двигатели с датчиками (Sensor) и без датчиков (Sensorless). Для BLDC двигателей, которые вращаются плавно, без рывков, необходима обратная связь. Поэтому контроллер ESC должен знать позиции и полюса магнитов ротора чтобы правильно запитывать статор. Эту информацию можно получить двумя способами: первый из них заключается в размещении датчика Холла внутри двигателя. Датчик Холла будет обнаруживать магнит и передавать информацию об этом в контроллер ESC. Этот тип двигателей называется Sensor BLDC (с датчиком) и он находит применение в электрических движущихся транспортных средствах. Второй метод обнаружения позиции магнитов заключается в использовании обратной ЭДС (электродвижущей силы), генерируемой катушками в то время когда магниты пересекают их. Достоинством этого метода является то, что он не требует использования каких либо дополнительных устройств (датчик Холла) – фазовый провод самостоятельно используется в качестве обратной связи благодаря наличию обратной ЭДС. Этот метод используется в двигателе, рассматриваемом в нашей статье, и именно он чаще всего применяется в дронах и других летающих устройствах.

Почему дроны и вертолеты используют именно BLDC двигатели?

Сейчас существует множество различных типов дронов – с двумя лопастями, с четырьмя лопастями и т.д. Но все они используют именно BLDC двигатели. Почему именно их, ведь BLDC двигатели стоят дороже чем обычные электродвигатели постоянного тока?

Существует несколько причин для этого:

  • большой крутящий момент, который очень важен для того чтобы оторвать летающее средство от земли;
  • эти двигатели доступны в формате OutRunner, что позволяет обойтись без сцепления в конструкции дрона;
  • маленький уровень вибраций во время работы, что очень важно для неподвижного зависания дрона в воздухе;
  • хорошее соотношение мощности к весу двигателя. Это очень важно для использования на летающих механизмах чтобы все элементы его конструкции имели как можно меньший вес. Обычный двигатель постоянного тока, обеспечивающий такой же крутящий момент как и BLDC двигатель, будет как минимум в два раза тяжелее него.

Зачем нужен контроллер ESC

Как мы уже знаем, для функционирования BLDC двигателей необходим какой-нибудь контроллер, который преобразует напряжение постоянного тока от батарейки в последовательность импульсов, подаваемую в определенном порядке на провода (фазы) двигателя. Этот контроллер называется ESC (Electronic Speed Controller – электронный контроллер скорости). Основной обязанностью данного контроллера является правильная подача питания на провода BLDC двигателя чтобы двигатель вращался в нужном направлении. Это осуществляется с помощью считывания обратной ЭДС (back EMF) с каждого провода и подачи питания на катушку в то время когда магнит пересекает ее. Внутри себя контроллер ESC содержит достаточно много разнообразной электроники и при желании вы можете подробно изучить его устройство по соответствующим материалам в сети интернет. Здесь же мы кратко рассмотрим рассмотрим только основные компоненты его конструкции.

Управление скоростью вращения на основе ШИМ (широтно-импульсной модуляции, в англ. PWM) . Контроллер ESC может управлять скоростью вращения BLDC двигателя при помощи считывания сигнала ШИМ подаваемого на его оранжевый провод. Принцип управления им очень похож на управление сервомоторами. Сигнал ШИМ, подаваемый на контроллер ESC, должен иметь период 20ms, а коэффициент заполнения этого ШИМ сигнала будет определять скорость вращения BLDC двигателя. Поскольку точно такой же принцип используется для управления углом поворотом сервомотора, то для управления BLDC двигателем мы можем использовать библиотеку для управления сервомоторами. Если вы не сталкивались с этим принципом ранее, то вы можете прочитать статью о подключении сервомотора к плате Arduino.

Battery Eliminator Circuit (BEC) – цепь, исключающая батарею . Почти все контроллеры ESC поставляются с этой схемой. Как следует из ее названия, данная схема устраняет потребность в использовании отдельной батареи для питания микроконтроллера, то есть в данном случае нам не понадобится отдельный источник питания для платы Arduino – контроллер ESC сам обеспечит плату Arduino регулируемым напряжением питания +5V. В различных контроллерах ESC используются различные схемы регулировки данного напряжения, но в большинстве случаев распространена схема с линейной регулировкой.

Встроенное ПО . Каждый контроллер ESC содержит в своем ПЗУ встроенную прикладную программу, написанную производителем контроллера. Эта программа во многом определяет логику функционирования контроллера. Наиболее популярными встроенными программами для контролеров ESC являются Traditional, Simon-K и BL-Heli. Эта программа может изменяться пользователем, однако мы в этой статье не будем рассматривать данный вопрос.

Читайте также:  Замена опоры двигателя хендай туксон

Некоторые термины, используемые в тематике BLDC и ESC

При изучении принципов работы BLDC двигателей и контроллеров ESC вы можете столкнуться с некоторыми терминами, используемыми в данной тематике. Кратко рассмотрим основные из этих терминов.

Braking (торможение) – определяет насколько быстро BLDC двигатель может остановить свое вращение. Это особенно актуально для летающих средств (дронов, геликоптеров и т.д.) поскольку они вынуждены часто изменять количество оборотов двигателя в минуту чтобы маневрировать в воздухе.

Soft Start (плавный пуск, старт) – эта способность особенно важна для BLDC двигателей когда вращающий момент от него на исполнительный механизм (колесо, винт и т.д.) передается через механизм передач, обычно состоящий из шестерен. Плавный пуск означает, что двигатель не начнет сразу вращаться с максимальной скоростью, а будет увеличивать свою скорость вращения постепенно независимо от того, с какой скоростью нарастает управляющее воздействие. Плавный пуск значительно снижает износ шестерен, входящих в передаточный механизм.

Motor Direction (направление вращения двигателя) – обычно направление вращения BLDC двигателей не изменяется в процессе эксплуатации, однако во время сборки и тестирования работы изделия может потребоваться изменение направления вращения двигателя, обычно это можно сделать просто поменяв местами любые два провода двигателя.

Low Voltage Stop (остановка при низком напряжении питания) . Обычно BLDC двигатели калибруют так, чтобы при одинаковом уровне управляющего воздействия скорость его вращения была постоянной. Однако этого трудно достигнуть потому что со временем напряжение питающей батареи уменьшается. Чтобы предотвратить это обычно контроллеры ESC программируют таким образом чтобы они останавливали работу BLDC двигателя когда напряжение питающей батареи опускается ниже определенной границы. Особенно эта функция полезна при использовании BLDC двигателей в дронах.

Response time (время отклика, время реакции, время ответа) . Означает способность двигателя быстро изменять скорость вращения при изменении управляющего воздействия. Чем меньше время реакции, тем лучше контроль над двигателем.

Advance (движение вперед) . Эта проблема является своеобразной «ахиллесовой пятой» для BLDC двигателей. Все BLDC двигатели имеют хотя бы небольшой подобный баг. Эта проблема вызвана тем, что когда катушка статора запитана ротор движется вперед поскольку на нем есть постоянный магнит. И когда управляющее напряжение с этой катушки снимают (чтобы подать его на следующую катушку) ротор продвигается вперед немного дальше чем предусмотрено логикой функционирования двигателя. Это нежелательное продвижение двигателя вперед в англоязычной литературе называют “Advance” и оно может приводить к нежелательным вибрациям, нагреву и шуму при работе двигателя. Поэтому хорошие контроллеры ESC стараются по возможности устранить этот эффект в работе BLDC двигателей.

Работа схемы

Схема подключения BLDC двигателя и контроллера ESC к плате Arduino представлена на следующем рисунке.

Как видите, схема достаточно проста. Контроллеру ESC необходим источник питания с напряжением 12V и током как минимум 5A. Для питания схемы можно использовать адаптер или Li-Po батарейку. Три фазы (провода) BLDC двигателя необходимо подсоединить к трем выходным проводам контроллера ESC – неважно в каком порядке.

Предупреждение : у некоторых контроллеров ESC нет выходных проводов, в этом случае вам необходимо будет припаивать провода от BLDC двигателя к контактам контроллера ESC. Обязательно изолируйте эти оголенные места (пайки) с помощью изоляционной ленты потому что через эти провода возможно протекание достаточно больших токов и любое короткое замыкание может привести к повреждению двигателя и контроллера ESC.

Схема BEC (Battery Eliminator circuit) в контроллере ESC будет самостоятельно обеспечивать (регулировать) постоянное напряжение +5V, поэтому его можно непосредственно использовать для питания платы Arduino. Для управления скоростью вращения двигателя в схеме используется потенциометр, подключенный к контакту A0 платы Arduino.

Внешний вид собранной конструкции показан на следующем рисунке.

Объяснение программы для Arduino

Полный код программы приведен в конце статьи, здесь же мы рассмотрим только его основные фрагменты.

Для управления BLDC двигателем мы будем формировать ШИМ сигнал с частотой 50 Гц и изменяемым от 0 до 100% коэффициентом заполнения. Значение коэффициента заполнения будет управляться с помощью потенциометра. То есть, вращая потенциометр, мы будем управлять скоростью вращения двигателя. Как уже указывалось, управление BLDC двигателем очень похоже на управление сервомотором с помощью ШИМ 50 Гц, поэтому в данном случае мы будем использовать ту же самую библиотеку, которую использовали для управления сервомотором. Если вы начинающий в изучении платформы Arduino, то перед дальнейшим прочтением данной статьи рекомендуем вам изучить принципы формирования ШИМ сигнала в Arduino и подключение сервомотора к плате Arduino.

ШИМ сигнал можно генерировать только на тех цифровых контактах платы Arduino, которые обозначены символом

. В нашей схеме мы будем управлять контроллером ESC с контакта 9 платы Arduino, поэтому следующей командой мы прикрепим контроллер ESC к этому контакту:

Оцените статью